La Network Analysis è un insieme di tecniche statistiche e matematiche per lo studio di dati relazionali per un sistema di entità interconnesse. Molti dei risultati per i dati di rete provengono dalla Social Network Analysis (SNA), incentrata principalmente sullo studio delle relazioni tra un insieme di individui e organizzazioni. La tesi tratta alcuni argomenti riguardanti la modellazione statistica per dati di rete, con particolare attenzione ai modelli utilizzati in SNA. Il nucleo centrale della tesi è rappresentato dai Capitoli 3, 4 e 5. Nel Capitolo 3, viene proposto un approccio alternativo per la stima dei modelli esponenziali per grafi casuali (Exponential Random Graph Models - ERGMs). Nel capitolo 4, l'approccio di modellazione ERGM e quello a Spazio Latente vengono confrontati in termini di bontà di adattamento. Nel capitolo 5, vengono proposti metodi alternativi per la stima della classe di modelli p2.
Topics in Statistical Models for Network Analysis
SORIANI, NICOLA
2012
Abstract
La Network Analysis è un insieme di tecniche statistiche e matematiche per lo studio di dati relazionali per un sistema di entità interconnesse. Molti dei risultati per i dati di rete provengono dalla Social Network Analysis (SNA), incentrata principalmente sullo studio delle relazioni tra un insieme di individui e organizzazioni. La tesi tratta alcuni argomenti riguardanti la modellazione statistica per dati di rete, con particolare attenzione ai modelli utilizzati in SNA. Il nucleo centrale della tesi è rappresentato dai Capitoli 3, 4 e 5. Nel Capitolo 3, viene proposto un approccio alternativo per la stima dei modelli esponenziali per grafi casuali (Exponential Random Graph Models - ERGMs). Nel capitolo 4, l'approccio di modellazione ERGM e quello a Spazio Latente vengono confrontati in termini di bontà di adattamento. Nel capitolo 5, vengono proposti metodi alternativi per la stima della classe di modelli p2.File | Dimensione | Formato | |
---|---|---|---|
SorianiThesisPhD.pdf
accesso aperto
Dimensione
8.75 MB
Formato
Adobe PDF
|
8.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/92416
URN:NBN:IT:UNIPD-92416