Cellule e tessuti umani sono sistemi essenziali per lo studio della biologia e fisiologia del corpo umano e per lo sviluppo di nuove strategie e farmaci per la cura di varie patologie. Il coinvolgimento di persone in casi studio di ricerca e testing farmacologici espone i soggetti ad elevato rischio e introduce problematiche tecniche ed etiche non facilmente risolvibili. Lo sviluppo di nuove strategie in vitro è di fondamentale importanza per ricavare informazioni sull’organismo umano e limitare l’uso di sistemi animali non pienamente predittivi. La richiesta di sistemi efficaci, rappresentativi e a basso costo in campo clinico ed industriale è indubbiamente in aumento. I sistemi convenzionali per colture cellulari sono normalmente costituiti da recipienti con dimensioni caratteristiche dell’ordine dei centimetri. I nutrienti sono veicolati alle cellule tramite mezzi di coltura liquidi che contengono buffer salini e oligoelementi. Un quantitativo di medium minimo è necessario per garantire un battente omogeneo al di sopra della coltura cellulare e deve essere sostituito periodicamente per apportare nuovi nutrienti e rimuovere i prodotti di scarto. Molti studi e applicazioni richiedono reagenti costosi e sono soggetti a una ridotta capacità di ricavare dati. La scoperta del processo di riprogrammazione cellulare da parte del Premio Nobel 2012 Yamanaka hanno aperto nuove esaltanti prospettive in ambito di ricerca e applicazioni cliniche. In tale processo, da una biopsia cutanea di un paziente è possibile ricavare cellule staminali pluripotenti indotte (iPSC) e derivare nuovi tessuti per una riparazione autologa ad hoc dei tessuti. Ad oggi, le iPSC umane (hiPSC) non sono ancora state utilizzate in ambito clinico a causa di aspetti sulla loro derivazione non ancora pienamente caratterizzati, di metodologie non a livello clinico e del costo significativo della derivazione di hiPSC per singolo paziente. La micronizzazione del processo di riprogrammazione può dare un’opportunità notevole per la derivazione di hiPSC a basso costo e per ottenere tessuti umani in vitro. Scopo di questa tesi è lo sviluppo di una piattaforma per la riprogrammazione di cellule umane in microscala. Per la sua realizzazione, abbiamo focalizzato la ricerca sullo sviluppo di un microambiente cellulare che tenga conto sia dell’ambiente solubile che dei componenti solidi per l’adesione cellulare. Durante questo dottorato, sono stati sviluppati degli idrogel sintetici e biodegradabili. La produzione su larga scala di substrati a rigidità variabile a base di poliacrilammide è stata fondamentale per rivelare le interazioni tra la rigidità del substrato e il comportamento e destino cellulare. L’ingegnerizzazione di idrogel biodegradabili ha rivelato il potenziale nello sviluppare tessuti in vitro funzionali e la loro integrazione nel paziente. Il know-how acquisito sulle modifiche chimiche è stato trasferito al controllo della topologia del substrato e all’interno dell’ambiente microfluidico. L’ambiente microfluidico e la sua amministrazione sono stati ottimizzati per garantire l’adesione e la crescita cellulare a lungo-termine e registrare importanti fenomeni biologici. Le proteine di adesione fondamentali per la crescita delle cellule sono state modificate e integrate in un ambiente in microscala. In microfluidica, poiché il medium necessario alle colture viene perfuso all’interno del ciruito, un flusso continuo o periodico possono essere applicati. Abbiamo così studiato l’amministrazione della distribuzione del medium per determinare le migliori strategie per colture a lungo termine in microfluidica. I risultati ottenuti nello sviluppo dei substrati e ambienti microfluidici per colture cellulari sono stati applicati alla generazione di una nuova piattaforma per la derivazione delle hiPSC, differenziamento e validazione in microscala. Per la prima volta in letteratura, è possibile ottenere cloni hiPSC in microfluidica con una riduzione sostanziale dei requisiti minimi (materiali, reagenti, spese globali). La produzione di hiPSC a basso costo può portare a una produzione di massa di tessuti caratterizzati e funzionali che possono in seguito essere integrati in supporti 3D e servire come valida fonte di derivazione per lo sviluppo di nuovi farmaci. La nostra piattaforma apre nuove prospettive nello studio e trattamento di malattie diffuse e rare coinvolgendo scienziati e imprenditori
High-throughput Human Cell Reprogramming through Substrate and Microfluidics Integration
GIULITTI, STEFANO
2014
Abstract
Cellule e tessuti umani sono sistemi essenziali per lo studio della biologia e fisiologia del corpo umano e per lo sviluppo di nuove strategie e farmaci per la cura di varie patologie. Il coinvolgimento di persone in casi studio di ricerca e testing farmacologici espone i soggetti ad elevato rischio e introduce problematiche tecniche ed etiche non facilmente risolvibili. Lo sviluppo di nuove strategie in vitro è di fondamentale importanza per ricavare informazioni sull’organismo umano e limitare l’uso di sistemi animali non pienamente predittivi. La richiesta di sistemi efficaci, rappresentativi e a basso costo in campo clinico ed industriale è indubbiamente in aumento. I sistemi convenzionali per colture cellulari sono normalmente costituiti da recipienti con dimensioni caratteristiche dell’ordine dei centimetri. I nutrienti sono veicolati alle cellule tramite mezzi di coltura liquidi che contengono buffer salini e oligoelementi. Un quantitativo di medium minimo è necessario per garantire un battente omogeneo al di sopra della coltura cellulare e deve essere sostituito periodicamente per apportare nuovi nutrienti e rimuovere i prodotti di scarto. Molti studi e applicazioni richiedono reagenti costosi e sono soggetti a una ridotta capacità di ricavare dati. La scoperta del processo di riprogrammazione cellulare da parte del Premio Nobel 2012 Yamanaka hanno aperto nuove esaltanti prospettive in ambito di ricerca e applicazioni cliniche. In tale processo, da una biopsia cutanea di un paziente è possibile ricavare cellule staminali pluripotenti indotte (iPSC) e derivare nuovi tessuti per una riparazione autologa ad hoc dei tessuti. Ad oggi, le iPSC umane (hiPSC) non sono ancora state utilizzate in ambito clinico a causa di aspetti sulla loro derivazione non ancora pienamente caratterizzati, di metodologie non a livello clinico e del costo significativo della derivazione di hiPSC per singolo paziente. La micronizzazione del processo di riprogrammazione può dare un’opportunità notevole per la derivazione di hiPSC a basso costo e per ottenere tessuti umani in vitro. Scopo di questa tesi è lo sviluppo di una piattaforma per la riprogrammazione di cellule umane in microscala. Per la sua realizzazione, abbiamo focalizzato la ricerca sullo sviluppo di un microambiente cellulare che tenga conto sia dell’ambiente solubile che dei componenti solidi per l’adesione cellulare. Durante questo dottorato, sono stati sviluppati degli idrogel sintetici e biodegradabili. La produzione su larga scala di substrati a rigidità variabile a base di poliacrilammide è stata fondamentale per rivelare le interazioni tra la rigidità del substrato e il comportamento e destino cellulare. L’ingegnerizzazione di idrogel biodegradabili ha rivelato il potenziale nello sviluppare tessuti in vitro funzionali e la loro integrazione nel paziente. Il know-how acquisito sulle modifiche chimiche è stato trasferito al controllo della topologia del substrato e all’interno dell’ambiente microfluidico. L’ambiente microfluidico e la sua amministrazione sono stati ottimizzati per garantire l’adesione e la crescita cellulare a lungo-termine e registrare importanti fenomeni biologici. Le proteine di adesione fondamentali per la crescita delle cellule sono state modificate e integrate in un ambiente in microscala. In microfluidica, poiché il medium necessario alle colture viene perfuso all’interno del ciruito, un flusso continuo o periodico possono essere applicati. Abbiamo così studiato l’amministrazione della distribuzione del medium per determinare le migliori strategie per colture a lungo termine in microfluidica. I risultati ottenuti nello sviluppo dei substrati e ambienti microfluidici per colture cellulari sono stati applicati alla generazione di una nuova piattaforma per la derivazione delle hiPSC, differenziamento e validazione in microscala. Per la prima volta in letteratura, è possibile ottenere cloni hiPSC in microfluidica con una riduzione sostanziale dei requisiti minimi (materiali, reagenti, spese globali). La produzione di hiPSC a basso costo può portare a una produzione di massa di tessuti caratterizzati e funzionali che possono in seguito essere integrati in supporti 3D e servire come valida fonte di derivazione per lo sviluppo di nuovi farmaci. La nostra piattaforma apre nuove prospettive nello studio e trattamento di malattie diffuse e rare coinvolgendo scienziati e imprenditoriFile | Dimensione | Formato | |
---|---|---|---|
giulitti_stefano_tesi.pdf
accesso aperto
Dimensione
4.64 MB
Formato
Adobe PDF
|
4.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/92462
URN:NBN:IT:UNIPD-92462