La Peridynamica, una teoria non locale del continuo proposta recentemente, è particolarmente adatta a descrivere fenomeni di frattura in una vasta gamma di materiali. Una delle tecniche più comuni per la sua implementazione numerica è basata su un approccio senza mesh, in cui l'intero corpo viene discretizzato con una griglia uniforme e un orizzonte costante, essendo quest'ultimo in relazione con la lunghezza di scala del materiale e/o del fenomeno analizzato. Di conseguenza le risorse computazionali possono non essere utilizzate in modo efficiente. Il presente lavoro si propone di sviluppare gli algoritmi per l’implementazione dell’adaptive grid refinement and scaling per griglie peridinamiche 2D e 3D, con lo scopo di ridurre il costo computazionale dei software basati sulla peridynamica. Questo approccio viene applicato allo studio della propagazione dinamica di cricche in materiali fragili. Il refinement viene attivato utilizzando un nuovo concetto di “innesco” che si basa sullo stato di danneggiamento del materiale, accoppiato con il più tradizionale innesco basato su un criterio energetico, già proposto in letteratura. L' utilizzo di un orizzonte e di un passo di griglia variabile può introdurre nella soluzione numerica della peridynamica alcune anomalie, che vengono analizzate dettagliatamente tramite analisi statiche e dinamiche. Inoltre, mentre la maggior parte della comunità scientifica sta lavorando per valutare a pieno le potenzialità della peridynamica, solo alcuni ricercatori hanno osservato indirettamente come il percorso della cricca possa seguire, in modo chiaramente non realistico, gli assi di simmetria della griglia. Il principale parametro che influisce su tale comportamento sembra essere il valore assunto dal rapporto m, definito come il rapporto tra l'orizzonte e il passo della griglia. La dipendenza del percorso della cricca dall'orientamento della griglia sarebbe un grave ostacolo per lo sviluppo di un software basato sulla peridynamica, poiché ciò porterebbe a pregiudicare quella che si ritiene essere uno dei suoi vantaggi più importanti rispetto ad altri metodi di calcolo, ossia la sua capacità di simulare la nucleazione (anche multipla), la propagazione, la ramificazione e l’interazione di cricche in materiali solidi in modo semplice. Successivamente, al fine di dimostrare l'efficacia del metodo proposto, vengono presentati alcuni esempi di propagazione di cricche per problemi 2D e 3D. Infine, i risultati ottenuti sono confrontati con quelli ottenuti con altri metodi numerici e con dati sperimentali.
Adaptive Grid Refinement and Scaling Techniques Applied to Peridynamics
DIPASQUALE, DANIELE
2017
Abstract
La Peridynamica, una teoria non locale del continuo proposta recentemente, è particolarmente adatta a descrivere fenomeni di frattura in una vasta gamma di materiali. Una delle tecniche più comuni per la sua implementazione numerica è basata su un approccio senza mesh, in cui l'intero corpo viene discretizzato con una griglia uniforme e un orizzonte costante, essendo quest'ultimo in relazione con la lunghezza di scala del materiale e/o del fenomeno analizzato. Di conseguenza le risorse computazionali possono non essere utilizzate in modo efficiente. Il presente lavoro si propone di sviluppare gli algoritmi per l’implementazione dell’adaptive grid refinement and scaling per griglie peridinamiche 2D e 3D, con lo scopo di ridurre il costo computazionale dei software basati sulla peridynamica. Questo approccio viene applicato allo studio della propagazione dinamica di cricche in materiali fragili. Il refinement viene attivato utilizzando un nuovo concetto di “innesco” che si basa sullo stato di danneggiamento del materiale, accoppiato con il più tradizionale innesco basato su un criterio energetico, già proposto in letteratura. L' utilizzo di un orizzonte e di un passo di griglia variabile può introdurre nella soluzione numerica della peridynamica alcune anomalie, che vengono analizzate dettagliatamente tramite analisi statiche e dinamiche. Inoltre, mentre la maggior parte della comunità scientifica sta lavorando per valutare a pieno le potenzialità della peridynamica, solo alcuni ricercatori hanno osservato indirettamente come il percorso della cricca possa seguire, in modo chiaramente non realistico, gli assi di simmetria della griglia. Il principale parametro che influisce su tale comportamento sembra essere il valore assunto dal rapporto m, definito come il rapporto tra l'orizzonte e il passo della griglia. La dipendenza del percorso della cricca dall'orientamento della griglia sarebbe un grave ostacolo per lo sviluppo di un software basato sulla peridynamica, poiché ciò porterebbe a pregiudicare quella che si ritiene essere uno dei suoi vantaggi più importanti rispetto ad altri metodi di calcolo, ossia la sua capacità di simulare la nucleazione (anche multipla), la propagazione, la ramificazione e l’interazione di cricche in materiali solidi in modo semplice. Successivamente, al fine di dimostrare l'efficacia del metodo proposto, vengono presentati alcuni esempi di propagazione di cricche per problemi 2D e 3D. Infine, i risultati ottenuti sono confrontati con quelli ottenuti con altri metodi numerici e con dati sperimentali.File | Dimensione | Formato | |
---|---|---|---|
Dipasquale_Daniele_Tesi.pdf
accesso aperto
Dimensione
10.92 MB
Formato
Adobe PDF
|
10.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/93658
URN:NBN:IT:UNIPD-93658