Il mantenimento della postura è un compito complesso, pur nella sua apparente naturalezza, ed è spesso compromesso in pazienti con patologie a carico del Sistema Nervoso Centrale (SNC). Questo compito è, infatti, frutto dell’integrazione di numerosi input sensoriali, propriocettivi ed esterocettivi, da parte del SNC; tali input vengono elaborati per attuare, in ogni istante, durante tutte le attività quotidiane, una configurazione di equilibrio per l’intero apparato muscoloscheletrico. La riabilitazione del mantenimento della postura ha acquistato importanza sempre crescente nel campo della neuro-riabilitazione ed ha conosciuto nuovi stimoli nel razionale della terapia mediata da robot, la quale si fonda sul concetto della plasticità corticale, ossia sulla capacità del SNC di riorganizzarsi anche a seguito di accidenti cerebrovascolari. Per questo motivo, gli ultimi decenni hanno visto l’introduzione di numerose piattaforme robotiche sia in Ricerca che in Clinica, allo scopo di migliorare il processo di recupero dell’equilibrio e la sua oggettivazione. L’assenza, in letteratura, di una piattaforma motorizzata a 2 gdl (gradi di libertà), e in grado di interagire con i soggetti posti al di sopra di essa, hanno portato alla progettazione di un dispositivo con queste caratteristiche, destinato all’utilizzo da parte dei pazienti pediatrici del MARlab (Movement Analysis and Robotics laboratory) dell’OPBG (Ospedale Pediatrico “Bambino Gesù”) di Palidoro (RM). Dopo l’individuazione delle specifiche di progetto, la scelta e il dimensionamento dei componenti, la piattaforma è stata disegnata in ambiente CAD, risultando un robot cartesiano con un workspace di 15x15 cm2 ed un basso profilo (170 mm), ideale per essere in futuro installata al di sotto del pavimento. Il cuore del dispositivo è costituito dai due motori lineari a induzione elettromagnetica LinMot, che consentono di attivare ciascuno una direzione del moto. Al fine di rendere la piattaforma interattiva, è stato necessario sensorizzare ciascun motore con una cella di carico, così da rilevare la volontà esterna di muovere il robot. Inoltre, trattandosi di un dispositivo destinato a pazienti pediatrici, aventi cioè massa corporea confrontabile con quella della piattaforma, è stato condotto uno studio per valutare la possibilità di compensare in accelerazione le uscite delle celle di carico, depurandole dalla forza di inerzia associata proprio al moto della piattaforma. La filosofia di approccio alla costruzione di questo prototipo, denominato SlideBiT2D, è quella di un sistema aperto ed evolvibile, sia dal punto di vista dell’hardware che del software, pronto ad accogliere nuove necessità espresse da parte del personale medico. Per questo, si è scelto di installare la rete di sensori e attuatori su bus di campo CAN, scegliendo come master della rete un nodo CANopen-compliant, programmabile però in ambiente LabVIEW. Il software è stato concepito come articolato su tre livelli e ne sono stati sviluppati i due più bassi, in modo da svincolare la creazione di una interfaccia utente da qualsiasi conoscenza del CANopen, protocollo molto efficiente ma anche complesso da apprendere. Per rendere la piattaforma una vera e propria interfaccia aptica, in grado cioè di rispondere alle sollecitazioni imposte dall’esterno, i motori sono stati controllati in velocità e, in più, è stato sviluppato un controllore di livello superiore per simulare una molla a 2 gdl, di rigidezza variabile K, posta in parallelo ad uno smorzatore con coefficiente C. Il controllo così realizzato è stato testato dapprima con un banco di prova, lungo una sola dimensione, ed è stato poi implementato con successo in 2D sulla piattaforma. Avere a che fare con un prototipo di un dispositivo medico ha richiesto alcune attenzioni particolari durante tutta la attività di progettazione. Anzitutto, per ciò che riguarda la sicurezza elettrica, il quadro elettrico è stato sviluppato da una ditta certificata (MPD srl – Induno Olona, VA). L’utilizzo stesso della piattaforma, in attesa che essa sia interrata, sarà auspicabilmente condotto in combinazione con l’utilizzo di un carroponte in dotazione al MARlab dell’OPBG di Santa Marinella. Infine, come si conviene ad ogni dispositivo di misura, la messa in opera del robot richiederà una ulteriore fase di taratura dei motori e delle catene di misura presenti, al fine di garantire la qualità delle misure e la sicurezza nella interazione per il paziente.. Infine, come si conviene a un qualsiasi dispositivo di misura, la messa in opera del robot richiederà una ulteriore fase di taratura dei motori e delle catene di misura presenti, al fine di garantire la qualità delle misure e la sicurezza nella interazione per il paziente.
Riabilitazione robotica della postura in Pediatria; progettazione, sviluppo, implementazione del sistema di controllo e sensorizzazione di un robot riabilitativo e sua utilizzazione nella routine clinica
PACILLI, ALESSANDRA
2014
Abstract
Il mantenimento della postura è un compito complesso, pur nella sua apparente naturalezza, ed è spesso compromesso in pazienti con patologie a carico del Sistema Nervoso Centrale (SNC). Questo compito è, infatti, frutto dell’integrazione di numerosi input sensoriali, propriocettivi ed esterocettivi, da parte del SNC; tali input vengono elaborati per attuare, in ogni istante, durante tutte le attività quotidiane, una configurazione di equilibrio per l’intero apparato muscoloscheletrico. La riabilitazione del mantenimento della postura ha acquistato importanza sempre crescente nel campo della neuro-riabilitazione ed ha conosciuto nuovi stimoli nel razionale della terapia mediata da robot, la quale si fonda sul concetto della plasticità corticale, ossia sulla capacità del SNC di riorganizzarsi anche a seguito di accidenti cerebrovascolari. Per questo motivo, gli ultimi decenni hanno visto l’introduzione di numerose piattaforme robotiche sia in Ricerca che in Clinica, allo scopo di migliorare il processo di recupero dell’equilibrio e la sua oggettivazione. L’assenza, in letteratura, di una piattaforma motorizzata a 2 gdl (gradi di libertà), e in grado di interagire con i soggetti posti al di sopra di essa, hanno portato alla progettazione di un dispositivo con queste caratteristiche, destinato all’utilizzo da parte dei pazienti pediatrici del MARlab (Movement Analysis and Robotics laboratory) dell’OPBG (Ospedale Pediatrico “Bambino Gesù”) di Palidoro (RM). Dopo l’individuazione delle specifiche di progetto, la scelta e il dimensionamento dei componenti, la piattaforma è stata disegnata in ambiente CAD, risultando un robot cartesiano con un workspace di 15x15 cm2 ed un basso profilo (170 mm), ideale per essere in futuro installata al di sotto del pavimento. Il cuore del dispositivo è costituito dai due motori lineari a induzione elettromagnetica LinMot, che consentono di attivare ciascuno una direzione del moto. Al fine di rendere la piattaforma interattiva, è stato necessario sensorizzare ciascun motore con una cella di carico, così da rilevare la volontà esterna di muovere il robot. Inoltre, trattandosi di un dispositivo destinato a pazienti pediatrici, aventi cioè massa corporea confrontabile con quella della piattaforma, è stato condotto uno studio per valutare la possibilità di compensare in accelerazione le uscite delle celle di carico, depurandole dalla forza di inerzia associata proprio al moto della piattaforma. La filosofia di approccio alla costruzione di questo prototipo, denominato SlideBiT2D, è quella di un sistema aperto ed evolvibile, sia dal punto di vista dell’hardware che del software, pronto ad accogliere nuove necessità espresse da parte del personale medico. Per questo, si è scelto di installare la rete di sensori e attuatori su bus di campo CAN, scegliendo come master della rete un nodo CANopen-compliant, programmabile però in ambiente LabVIEW. Il software è stato concepito come articolato su tre livelli e ne sono stati sviluppati i due più bassi, in modo da svincolare la creazione di una interfaccia utente da qualsiasi conoscenza del CANopen, protocollo molto efficiente ma anche complesso da apprendere. Per rendere la piattaforma una vera e propria interfaccia aptica, in grado cioè di rispondere alle sollecitazioni imposte dall’esterno, i motori sono stati controllati in velocità e, in più, è stato sviluppato un controllore di livello superiore per simulare una molla a 2 gdl, di rigidezza variabile K, posta in parallelo ad uno smorzatore con coefficiente C. Il controllo così realizzato è stato testato dapprima con un banco di prova, lungo una sola dimensione, ed è stato poi implementato con successo in 2D sulla piattaforma. Avere a che fare con un prototipo di un dispositivo medico ha richiesto alcune attenzioni particolari durante tutta la attività di progettazione. Anzitutto, per ciò che riguarda la sicurezza elettrica, il quadro elettrico è stato sviluppato da una ditta certificata (MPD srl – Induno Olona, VA). L’utilizzo stesso della piattaforma, in attesa che essa sia interrata, sarà auspicabilmente condotto in combinazione con l’utilizzo di un carroponte in dotazione al MARlab dell’OPBG di Santa Marinella. Infine, come si conviene ad ogni dispositivo di misura, la messa in opera del robot richiederà una ulteriore fase di taratura dei motori e delle catene di misura presenti, al fine di garantire la qualità delle misure e la sicurezza nella interazione per il paziente.. Infine, come si conviene a un qualsiasi dispositivo di misura, la messa in opera del robot richiederà una ulteriore fase di taratura dei motori e delle catene di misura presenti, al fine di garantire la qualità delle misure e la sicurezza nella interazione per il paziente.File | Dimensione | Formato | |
---|---|---|---|
Pacilli_PhD_con_frontespizio_completa.pdf
accesso solo da BNCF e BNCR
Dimensione
6.96 MB
Formato
Adobe PDF
|
6.96 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/94019
URN:NBN:IT:UNIPD-94019