Le batterie Redox a Flusso (RFB) sono celle elettrochimiche capaci di convertire reversibilmente l'energia chimica immagazzinata in coppie redox in energia elettrica. Le batterie a flusso al vanadio (VRFB) sfruttano coppie redox entrambe basate su specie di vanadio. Per far sì che la tecnologia VRFB sia commercialmente valida, occorre superare barriere tecniche ed economiche che includono elevati costi di capitale ed un rapido decadimento della capacità. L'obiettivo principale di questa tesi è di ottenere VRFB ad alte prestazioni e di lunga durata, principalmente riducendo la permeabilità del vanadio attraverso la membrana. Al giorno d'oggi nelle VRFB vengono utilizzate membrane a base di acido perfluorosolfonico, come il Nafion. Il Nafion ha un'elevata stabilità chimica e meccanica, e presenta una buona conducibilità protonica. La VRFB con membrana al Nafion hanno un rapido decadimento della capacità a causa dell'alto crossover del vanadio. Per superare i limiti del Nafion, questa tesi riporta la sintesi e la caratterizzazione di membrane ibride inorganico-organiche conduttrici di protoni alternative agli ionomeri perfluorurati. Due famiglie di membrane ibride sono state ottenute: 1) membrana di Nafion drogata con nanofiller WO3, per ridurre il crossover del vanadio mantenendo un’elevata conducibilità protonica; 2) sintesi di una membrana a base di poli(etere-etere-chetone) solfonato (SPEEK), con grado di solfonazione ottimizzato. Anche la membrana a base di SPEEK viene poi drogata con WO3 per ridurre il crossover del vanadio. Nelle membrane ibride preparate mediante una procedura di solvent-casting, l'introduzione di nanoparticelle di WO3 non altera in modo significativo gli eventi di degradazione termica della matrice polimerica, mantenendo così una buona stabilità termica. Misure MDSC rivelano che nelle membrane ibride gli eventi termici sono leggermente spostati a causa della formazione di "crosslink dinamici" tra le nanoparticelle di WO3 e la matrice polimerica, che stabilizzano la membrana. La dimensione dei domini idrofili e l’assorbimento d’acqua della mambrana si riducono all’aumentare del contenuto di WO3. Di conseguenza, i percorsi di migrazione di carica diventano più tortuosi. Questa maggiore tortuosità alla migrazione di carica corrisponde ad una permeabilità inferiore delle specie vanadio. Al contrario del vanadio, la tortuosità ha probabilmente un effetto inferiore per i protoni, poiché gli ioni di vanadio attraversano solo i domini massivi di acqua, mentre i protoni vengono scambiati anche alle interfacce polimero-nanofiller. Così, la permeabilità al vanadio delle membrane ibride diminuisce significativamente e la selettività degli ioni è molto migliorata rispetto al Nafion. Le migliori membrane ibride sono scelte per il test in cella VRFB. Esse esibiscono una maggiore efficienza coulombica rispetto al riferimento Nafion 212. La ridotta permeazione delle specie di vanadio è rivelata anche dal minore decadimento della capacità di scarica e dai tempi di autoscarica più lunghi per le membrane ibride. Pertanto, la nuova famiglia di membrane ibride è un promettente candidato per l'applicazione in VRFB. Il capitolo finale descrive lo studio, attraverso la spettroscopia Raman, delle specie presenti nella soluzione positiva (catolita) di una VRFB in funzione dello stato di carica (SOC). Gli equilibri dovuti alla presenza di complessi di coordinazione del vanadio, che interagiscono fortemente con i leganti HSO4- e SO42-, vengono evidenziati. In particolare, viene dimostrato come il catolita includa specie addizionali oltre a VO2+ e VO2+, quali HV2O5- e H3V2O7-. La presenza di tali specie deve essere considerata per comprendere in dettaglio i processi di scarica e carica che avvengono agli elettrodi di una VRFB. Infatti, su queste basi, ci si aspetta il coinvolgimento di un'ampia distribuzione di specie V(IV) e V(V), che potrebbero influenzare le caratteristiche macroscopiche significativamente cruciali di una VRFB.

Electrical energy storage by electrochemical vanadium redox flow battery methods

SUN, CHUANYU
2018

Abstract

Le batterie Redox a Flusso (RFB) sono celle elettrochimiche capaci di convertire reversibilmente l'energia chimica immagazzinata in coppie redox in energia elettrica. Le batterie a flusso al vanadio (VRFB) sfruttano coppie redox entrambe basate su specie di vanadio. Per far sì che la tecnologia VRFB sia commercialmente valida, occorre superare barriere tecniche ed economiche che includono elevati costi di capitale ed un rapido decadimento della capacità. L'obiettivo principale di questa tesi è di ottenere VRFB ad alte prestazioni e di lunga durata, principalmente riducendo la permeabilità del vanadio attraverso la membrana. Al giorno d'oggi nelle VRFB vengono utilizzate membrane a base di acido perfluorosolfonico, come il Nafion. Il Nafion ha un'elevata stabilità chimica e meccanica, e presenta una buona conducibilità protonica. La VRFB con membrana al Nafion hanno un rapido decadimento della capacità a causa dell'alto crossover del vanadio. Per superare i limiti del Nafion, questa tesi riporta la sintesi e la caratterizzazione di membrane ibride inorganico-organiche conduttrici di protoni alternative agli ionomeri perfluorurati. Due famiglie di membrane ibride sono state ottenute: 1) membrana di Nafion drogata con nanofiller WO3, per ridurre il crossover del vanadio mantenendo un’elevata conducibilità protonica; 2) sintesi di una membrana a base di poli(etere-etere-chetone) solfonato (SPEEK), con grado di solfonazione ottimizzato. Anche la membrana a base di SPEEK viene poi drogata con WO3 per ridurre il crossover del vanadio. Nelle membrane ibride preparate mediante una procedura di solvent-casting, l'introduzione di nanoparticelle di WO3 non altera in modo significativo gli eventi di degradazione termica della matrice polimerica, mantenendo così una buona stabilità termica. Misure MDSC rivelano che nelle membrane ibride gli eventi termici sono leggermente spostati a causa della formazione di "crosslink dinamici" tra le nanoparticelle di WO3 e la matrice polimerica, che stabilizzano la membrana. La dimensione dei domini idrofili e l’assorbimento d’acqua della mambrana si riducono all’aumentare del contenuto di WO3. Di conseguenza, i percorsi di migrazione di carica diventano più tortuosi. Questa maggiore tortuosità alla migrazione di carica corrisponde ad una permeabilità inferiore delle specie vanadio. Al contrario del vanadio, la tortuosità ha probabilmente un effetto inferiore per i protoni, poiché gli ioni di vanadio attraversano solo i domini massivi di acqua, mentre i protoni vengono scambiati anche alle interfacce polimero-nanofiller. Così, la permeabilità al vanadio delle membrane ibride diminuisce significativamente e la selettività degli ioni è molto migliorata rispetto al Nafion. Le migliori membrane ibride sono scelte per il test in cella VRFB. Esse esibiscono una maggiore efficienza coulombica rispetto al riferimento Nafion 212. La ridotta permeazione delle specie di vanadio è rivelata anche dal minore decadimento della capacità di scarica e dai tempi di autoscarica più lunghi per le membrane ibride. Pertanto, la nuova famiglia di membrane ibride è un promettente candidato per l'applicazione in VRFB. Il capitolo finale descrive lo studio, attraverso la spettroscopia Raman, delle specie presenti nella soluzione positiva (catolita) di una VRFB in funzione dello stato di carica (SOC). Gli equilibri dovuti alla presenza di complessi di coordinazione del vanadio, che interagiscono fortemente con i leganti HSO4- e SO42-, vengono evidenziati. In particolare, viene dimostrato come il catolita includa specie addizionali oltre a VO2+ e VO2+, quali HV2O5- e H3V2O7-. La presenza di tali specie deve essere considerata per comprendere in dettaglio i processi di scarica e carica che avvengono agli elettrodi di una VRFB. Infatti, su queste basi, ci si aspetta il coinvolgimento di un'ampia distribuzione di specie V(IV) e V(V), che potrebbero influenzare le caratteristiche macroscopiche significativamente cruciali di una VRFB.
30-nov-2018
Inglese
Vanadium redox flow batteries; Hybrid inorganic-organic proton-conducting membranes; Broadband electrical spectroscopy; Ion selectivity
DI NOTO, VITO
MATTEI, GIOVANNI
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
sun_chuanyu_tesi_.pdf

accesso aperto

Dimensione 8.23 MB
Formato Adobe PDF
8.23 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/94167
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-94167