This thesis deals with variational models for systems governed by nonlocal interactions. In particular, we analyze systems of hard spheres governed by attractive Riesz potentials, surface energies related to fractional perimeters and gradient flows of such energies leading to local and nonlocal geometric evolutions; eventually, we consider similar problems for densities governed by Gagliardo-type seminorms, focussing on fractional heat flows.

A variational approach to nonlocal interactions: discrete-to-continuum analysis, ground states and geometric evolutions

KUBIN, ANDREA
2021

Abstract

This thesis deals with variational models for systems governed by nonlocal interactions. In particular, we analyze systems of hard spheres governed by attractive Riesz potentials, surface energies related to fractional perimeters and gradient flows of such energies leading to local and nonlocal geometric evolutions; eventually, we consider similar problems for densities governed by Gagliardo-type seminorms, focussing on fractional heat flows.
17-dic-2021
Inglese
Fractional perimeters and gradient flows; Riesz potentials; nonlocal interactions
PONSIGLIONE, Marcello
DE SOLE, ALBERTO
Università degli Studi di Roma "La Sapienza"
File in questo prodotto:
File Dimensione Formato  
Tesi_dottorato_Kubin.pdf

accesso aperto

Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/95629
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA1-95629