Le reti neuronali sono alla base della codifica dell'informazione cerebrale. L'obiettivo principale dello studio delle popolazioni neuronali è quello di caratterizzare la relazione tra uno stimolo e la risposta individuale o globale dei neuroni e di studiare il rapporto tra le varie attività elettriche dei neuroni appartenenti ad una particolare rete, comprendendo anche come la topologia e la connettività della rete neuronale influiscano sulla loro funzionalità. Fino ad oggi, molte tecniche sono state sviluppate per studiare questi sistemi complessi: studi a singola cellula mirano a studiare singoli neuroni e le loro connessioni con un numero limitato di altre cellule; sul lato opposto, approcci su larga scala e a bassa risoluzione, come la risonanza magnetica funzionale o l'elettroencefalogramma, registrano segnali elettrofisiologici generati nel cervello da vaste popolazioni di cellule. Più recentemente, sono state sviluppate tecniche di registrazione multisito che mirano ad abbattere le limitazioni dei precedenti approcci, rendendo possibile la misurazione ad alta risoluzione di segnali generati da grandi ensamble neuronali e da diverse regioni del cervello simultaneamente, ad esempio mediante l'uso di chip impiantabili a semiconduttore. I potenziali di campo locali (LFP) catturano processi sinaptici chiave che non possono essere estratti dall'attività di spiking di qualche neurone isolato. Numerosi studi hanno utilizzato gli LFP per studiare i meccanismi corticali coinvolti nei processi sensoriali, motori e cognitivi, come la memoria e la percezione. Gli LFP rappresentano anche dei segnali interessanti nell'ambito delle applicazioni neuroprotesiche e per monitorare l'attività cerebrale negli esseri umani, dal momento che possono essere registrati più stabilmente e facilmente in impianti cronici rispetto agli spike neuronali. In questo studio, sono riportati dei profili LFP registrati dalla barrel cortex di ratto tramite chip ad ago ad alta risoluzione basati su tecnologia CMOS e confrontati con quelli ottenuti tramite elettrodi convenzionali in Ag/AgCl inseriti in micropipette di vetro, strumenti comunemente usati in elettrofisiologia. La barrel cortex di ratto è un esempio ben noto di mapping topografico, nel quale ogni baffo sul muso dell'animale è mappato in una specifica area corticale, chiamata barrel. La barrel cortex contiene la rappresentazione sensoriale dei baffi dell'animale e rappresenta uno dei primi stadi di elaborazione dell'informazione tattile, insieme al ganglio del trigemino e al talamo. Essa è un'area di primaria importanza per lo studio del funzionamento della corteccia cerebrale, visto che le colonne corticali che formano i blocchi di base della neocorteccia possono essere visualizzati facilmente all'interno della barrel cortex. La barrel cortex inoltre è utilizzata come sistema di test in numerose metodologie innovative, grazie alla sua struttura unica ed istantaneamente identificabile, e grazie anche al fatto che le specie dotate di barrel, i roditori, sono gli animali da laboratorio più comuni. La barrel cortex e le sue interconnessioni neuronali sono stati oggetto delle ricerche più disparate in questi ultimi decenni. Attualmente, alcuni studi (come questo) non mirano solamente a comprendere meglio la barrel cortex, ma anche ad analizzare problematiche in campi scientifici collegati, utilizzando la barrel cortex come modello base. In questo lavoro, sono stati evocati segnali LFP nella barrel cortex tramite deflessioni ripetute dei baffi dell'animale, realizzate in modo controllato tramite un sistema di deflessione piezoelettrica a closed-loop innescato da un sistema di acquisizione LabView. Le risposte evocate generate nella barrel dalla stimolazione ripetuta dei baffi presentano elevata variabilità nella forma e nelle latenze temporali. Inoltre, il tipo di anestesia utilizzata può influenzare profondamente il profilo della risposta evocata. Questo studio riporta i risultati preliminari sulla variabilità della risposta neuronale e sull'effetto di due anestetici di uso comune su questi segnali, confrontando le distribuzioni delle risposte evocate in ratti anestetizzati con tiletamina-xylazina (il quale agisce prevalentemente sui recettori eccitatori di tipo NMDA) e uretano (che agisce in modo più bilanciato e complesso su entrambi i sistemi eccitatori ed inibitori, preservando la plasticità sinaptica). Sono state analizzate e discusse alcune caratteristiche rappresentative del segnale evocato (ad esempio, le latenze temporali e l'ampiezza degli eventi), registrato a varie profondità corticali. Per tutte le prondità corticali acquisite, sono state stimate le distribuzioni statistiche di tali parametri, in modo da valutare la variabilità degli LFP evocati dalle stimolazioni meccaniche individuali delle vibrisse del ratto lungo l'intera colonna corticale. I primi risultati presentano una grande variabilità nelle risposte corticali, sia in latenza che in ampiezza. Inoltre, è stata riscontrata una differenza significativa nella latenza del primo picco principale delle risposte evocate: gli LFP evocati in animali anestetizzati con tiletamina-xylazina presentavano una latenza più lunga di quelli registrati in ratti anestetizzati con uretano. Inoltre, le distribuzioni dei parametri analizzati erano più strette e piccate in uretano, in corrispondenza di tutte le profondità corticali. Questo comportamento è sicuramente da attribuire al differente meccanismo d'azione dei due anestetici su specifici recettori sinaptici, e quindi nell'elaborazione e nella trasmissione dell'informazione sensoriale lungo tutto il percorso corticale. E' stato inoltre discusso il ruolo della attività basale nella modulazione della risposta evocata. A questo proposito, è stata registrata l'attività spontanea in corrispondenza dei vari layer corticali ed analizzata nel contesto statistico delle 'valanghe neuronali'. Una valanga neuronale è una cascata di attività elettrica in una rete neuronale, la cui distribuzione statistica dei parametri principali (dimensione e vita media) può essere approssimata da una legge di potenza. La distribuzione delle dimensioni di una valanga in una rete neuronale segue una legge di potenza del tipo P(s)=s^-a, con a=1.5. Tale esponente è un riflesso delle correlazioni spaziali a lungo raggio nell'attività neuronale spontanea. Dal momento che i picchi negativi (nLFPs) nelle tracce elettrofisiologiche originano dalla somma di potenziali d'azione sincronizzati generati da neuroni posti nelle vicinanze dell'elettrodo di registrazione, ci siamo chiesti se fosse possibile modellizare i singoli nLFP registrati nell'attività basale tramite un singolo elettrodo come il risultato di valanghe neuronali locali. Pertanto, abbiamo analizzato la distribuzione della dimensione (cioè l'ampiezza in uV) di tali picchi, in modo da identificare una distribuzione power-law appropriata, che potesse descrivere anche le registrazioni a singolo elettrodo. Infine, sono presentate e discusse le prime registrazioni in assoluto degli LFP evocati lungo un'intera colonna corticale ottenute tramite l'ultima generazione di chip impiantabili a tecnologia CMOS. Questi ultimi presentano una matrice di 256 siti di registrazione, organizzata secondo due possibili topologie, 16 x 16 o 4 x 64, e avente una distanza tra gli elettrodi pari a 15 um o 33 um rispettivamente. Una precisa dinamica di propagazione dei potenziali evocati può già essere riconosciuta in questi primissimi profili corticali. Nel prossimo futuro, l'uso di questi dispositivi a semiconduttore potrà aiutare a comprendere il decorso di sindromi neurodegerative come il Parkinson o l'Alzheimer, associando sintomi e comportamenti tipo della malattia a specifiche caratteristiche neuronali. I chip impiantabili potranno anche essere utilizzati come 'electroceuticals', ossia potranno aiutare a rallentare (o addirittura a capovolgere) il decorso delle malattie neurogenerative, costituendo le basi di protesi neuronali in grado di sostenere fisicamente o allenare funzionalmente le popolazioni neuronali danneggiate. L'identificazione e il rilevamento di segnali neuronali ad alta risoluzione aiuterà anche a sviluppare complesse interfacce cervello-macchina, che consentiranno il controllo di protesi intelligenti e che forniranno sofisticati meccanismi di feedback a chi ha perso l'uso di alcune parti del proprio corpo o determinate funzioni cerebrali.
Neuronal Population Encoding of Sensory Information in the Rat Barrel Cortex: Local Field Potential Recording and Characterization by an Innovative High-Resolution Brain-Chip Interface
CECCHETTO, CLAUDIA
2016
Abstract
Le reti neuronali sono alla base della codifica dell'informazione cerebrale. L'obiettivo principale dello studio delle popolazioni neuronali è quello di caratterizzare la relazione tra uno stimolo e la risposta individuale o globale dei neuroni e di studiare il rapporto tra le varie attività elettriche dei neuroni appartenenti ad una particolare rete, comprendendo anche come la topologia e la connettività della rete neuronale influiscano sulla loro funzionalità. Fino ad oggi, molte tecniche sono state sviluppate per studiare questi sistemi complessi: studi a singola cellula mirano a studiare singoli neuroni e le loro connessioni con un numero limitato di altre cellule; sul lato opposto, approcci su larga scala e a bassa risoluzione, come la risonanza magnetica funzionale o l'elettroencefalogramma, registrano segnali elettrofisiologici generati nel cervello da vaste popolazioni di cellule. Più recentemente, sono state sviluppate tecniche di registrazione multisito che mirano ad abbattere le limitazioni dei precedenti approcci, rendendo possibile la misurazione ad alta risoluzione di segnali generati da grandi ensamble neuronali e da diverse regioni del cervello simultaneamente, ad esempio mediante l'uso di chip impiantabili a semiconduttore. I potenziali di campo locali (LFP) catturano processi sinaptici chiave che non possono essere estratti dall'attività di spiking di qualche neurone isolato. Numerosi studi hanno utilizzato gli LFP per studiare i meccanismi corticali coinvolti nei processi sensoriali, motori e cognitivi, come la memoria e la percezione. Gli LFP rappresentano anche dei segnali interessanti nell'ambito delle applicazioni neuroprotesiche e per monitorare l'attività cerebrale negli esseri umani, dal momento che possono essere registrati più stabilmente e facilmente in impianti cronici rispetto agli spike neuronali. In questo studio, sono riportati dei profili LFP registrati dalla barrel cortex di ratto tramite chip ad ago ad alta risoluzione basati su tecnologia CMOS e confrontati con quelli ottenuti tramite elettrodi convenzionali in Ag/AgCl inseriti in micropipette di vetro, strumenti comunemente usati in elettrofisiologia. La barrel cortex di ratto è un esempio ben noto di mapping topografico, nel quale ogni baffo sul muso dell'animale è mappato in una specifica area corticale, chiamata barrel. La barrel cortex contiene la rappresentazione sensoriale dei baffi dell'animale e rappresenta uno dei primi stadi di elaborazione dell'informazione tattile, insieme al ganglio del trigemino e al talamo. Essa è un'area di primaria importanza per lo studio del funzionamento della corteccia cerebrale, visto che le colonne corticali che formano i blocchi di base della neocorteccia possono essere visualizzati facilmente all'interno della barrel cortex. La barrel cortex inoltre è utilizzata come sistema di test in numerose metodologie innovative, grazie alla sua struttura unica ed istantaneamente identificabile, e grazie anche al fatto che le specie dotate di barrel, i roditori, sono gli animali da laboratorio più comuni. La barrel cortex e le sue interconnessioni neuronali sono stati oggetto delle ricerche più disparate in questi ultimi decenni. Attualmente, alcuni studi (come questo) non mirano solamente a comprendere meglio la barrel cortex, ma anche ad analizzare problematiche in campi scientifici collegati, utilizzando la barrel cortex come modello base. In questo lavoro, sono stati evocati segnali LFP nella barrel cortex tramite deflessioni ripetute dei baffi dell'animale, realizzate in modo controllato tramite un sistema di deflessione piezoelettrica a closed-loop innescato da un sistema di acquisizione LabView. Le risposte evocate generate nella barrel dalla stimolazione ripetuta dei baffi presentano elevata variabilità nella forma e nelle latenze temporali. Inoltre, il tipo di anestesia utilizzata può influenzare profondamente il profilo della risposta evocata. Questo studio riporta i risultati preliminari sulla variabilità della risposta neuronale e sull'effetto di due anestetici di uso comune su questi segnali, confrontando le distribuzioni delle risposte evocate in ratti anestetizzati con tiletamina-xylazina (il quale agisce prevalentemente sui recettori eccitatori di tipo NMDA) e uretano (che agisce in modo più bilanciato e complesso su entrambi i sistemi eccitatori ed inibitori, preservando la plasticità sinaptica). Sono state analizzate e discusse alcune caratteristiche rappresentative del segnale evocato (ad esempio, le latenze temporali e l'ampiezza degli eventi), registrato a varie profondità corticali. Per tutte le prondità corticali acquisite, sono state stimate le distribuzioni statistiche di tali parametri, in modo da valutare la variabilità degli LFP evocati dalle stimolazioni meccaniche individuali delle vibrisse del ratto lungo l'intera colonna corticale. I primi risultati presentano una grande variabilità nelle risposte corticali, sia in latenza che in ampiezza. Inoltre, è stata riscontrata una differenza significativa nella latenza del primo picco principale delle risposte evocate: gli LFP evocati in animali anestetizzati con tiletamina-xylazina presentavano una latenza più lunga di quelli registrati in ratti anestetizzati con uretano. Inoltre, le distribuzioni dei parametri analizzati erano più strette e piccate in uretano, in corrispondenza di tutte le profondità corticali. Questo comportamento è sicuramente da attribuire al differente meccanismo d'azione dei due anestetici su specifici recettori sinaptici, e quindi nell'elaborazione e nella trasmissione dell'informazione sensoriale lungo tutto il percorso corticale. E' stato inoltre discusso il ruolo della attività basale nella modulazione della risposta evocata. A questo proposito, è stata registrata l'attività spontanea in corrispondenza dei vari layer corticali ed analizzata nel contesto statistico delle 'valanghe neuronali'. Una valanga neuronale è una cascata di attività elettrica in una rete neuronale, la cui distribuzione statistica dei parametri principali (dimensione e vita media) può essere approssimata da una legge di potenza. La distribuzione delle dimensioni di una valanga in una rete neuronale segue una legge di potenza del tipo P(s)=s^-a, con a=1.5. Tale esponente è un riflesso delle correlazioni spaziali a lungo raggio nell'attività neuronale spontanea. Dal momento che i picchi negativi (nLFPs) nelle tracce elettrofisiologiche originano dalla somma di potenziali d'azione sincronizzati generati da neuroni posti nelle vicinanze dell'elettrodo di registrazione, ci siamo chiesti se fosse possibile modellizare i singoli nLFP registrati nell'attività basale tramite un singolo elettrodo come il risultato di valanghe neuronali locali. Pertanto, abbiamo analizzato la distribuzione della dimensione (cioè l'ampiezza in uV) di tali picchi, in modo da identificare una distribuzione power-law appropriata, che potesse descrivere anche le registrazioni a singolo elettrodo. Infine, sono presentate e discusse le prime registrazioni in assoluto degli LFP evocati lungo un'intera colonna corticale ottenute tramite l'ultima generazione di chip impiantabili a tecnologia CMOS. Questi ultimi presentano una matrice di 256 siti di registrazione, organizzata secondo due possibili topologie, 16 x 16 o 4 x 64, e avente una distanza tra gli elettrodi pari a 15 um o 33 um rispettivamente. Una precisa dinamica di propagazione dei potenziali evocati può già essere riconosciuta in questi primissimi profili corticali. Nel prossimo futuro, l'uso di questi dispositivi a semiconduttore potrà aiutare a comprendere il decorso di sindromi neurodegerative come il Parkinson o l'Alzheimer, associando sintomi e comportamenti tipo della malattia a specifiche caratteristiche neuronali. I chip impiantabili potranno anche essere utilizzati come 'electroceuticals', ossia potranno aiutare a rallentare (o addirittura a capovolgere) il decorso delle malattie neurogenerative, costituendo le basi di protesi neuronali in grado di sostenere fisicamente o allenare funzionalmente le popolazioni neuronali danneggiate. L'identificazione e il rilevamento di segnali neuronali ad alta risoluzione aiuterà anche a sviluppare complesse interfacce cervello-macchina, che consentiranno il controllo di protesi intelligenti e che forniranno sofisticati meccanismi di feedback a chi ha perso l'uso di alcune parti del proprio corpo o determinate funzioni cerebrali.File | Dimensione | Formato | |
---|---|---|---|
Doctoral_Thesis_Claudia_Cecchetto.pdf
accesso aperto
Dimensione
17.08 MB
Formato
Adobe PDF
|
17.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/97091
URN:NBN:IT:UNIPD-97091