L’attività di ricerca presentata in questa tesi ha riguardato la sintesi, la caratterizzazione e l’ottimizzazione di ceramici silicatici, realizzati a partire dalla pirolisi controllata di polimeri preceramici caricati con fillers inorganici. Sulla base di tale metodo di sintesi, i polimeri preceramici possono essere utilizzati come precursori per l’ottenimento di silice in virtù della loro conversione da polimeri a ceramici tramite reazioni termo-ossidative. Oltre al basso costo, alla larga disponibilità e alla semplicità di utilizzo, un ulteriore vantaggio riguarda la fabbricazione del ceramico finale dal punto di vista del processo. Infatti, il componente può essere formato sfruttando le convenzionali tecniche di formatura per i materiali polimerici, sfruttando la presenza di una componente polimerica nel sistema prima di imporne la reticolazione. Tali semplici tecniche di formatura includono anche la realizzazione di componenti densi, tramite pressatura, o di corpi altamente porosi, tramite stampaggio 3-D diretto o schiumaggio delle miscele preceramiche, prima di ceramizzarle. L’inserimento di fillers, che generalmente si suddividono in attivi e passivi, è considerata una delle più efficaci strategie per ridurre il ritiro dimensionale e la formazione di macrodifetti, che inevitabilmente hanno luogo durante la conversione da materiale polimerico a ceramico, permettendo la realizzazione di componenti relativamente spessi. Un approccio più innovativo relativo all’uso di fillers reattivi, invece, riguarda l’introduzione di fillers come precursori di ossidi che possano reagire completamente con il residuo ceramico dei precursori polimerici, piuttosto che finalizzati a compensare il ritiro dimensionale dei componenti. Dalle reazioni tra i precursori polimerici e i fillers reattivi durante la pirolisi, risulta la formazione di fasi cristalline specifiche, che generalmente non sono ottenibili in modo diretto dal semplice trattamento termico dei precursori polimerici. Seguendo tale processo di sintesi, la presente tesi di dottorato ha avuto come obiettivo lo studio delle applicazioni che tale tecnica potrebbe offrire, partendo da miscele a base di polimeri siliconici caricati con filler reattivi. In questo modo, i vantaggi derivanti dalla presenza di una componente polimerica, sfruttati soprattutto in fase di formatura, possono anche essere combinati con i vantaggi offerti dall’intero ciclo produttivo di ceramici da polimeri preceramici, portando alla realizzazione di componenti ceramici a temperature abbastanza basse (entro i 1200 °C) e evitando i metodi di sintesi più convenzionali. Nel presento lavoro di ricerca, i fillers incorporati nelle miscele preceramiche sono anche stati sfruttati come agenti schiumanti o formatori di fase liquida, permettendo rispettivamente lo schiumaggio diretto di componenti altamente porosi in un caso e l’ottenimento di vetro-ceramiche nel secondo. Ad ogni modo, come già spiegato, il fine principale dell’uso dei fillers, qui, è stato il loro utilizzo come precursori di ossidi, in modo da permettere, dopo ceramizzazione, la sintesi di fasi ceramiche cristalline di specifica composizione, direttamente ottenibili dalla reazione tra il residuo ceramico dei precursori polimerici e gli ossidi provenienti dalla decomposizione termica dei fillers reattivi. La tipologia di fillers può essere adeguatamente modificata a seconda della composizione finale desiderata; di conseguenza, un’enorme varietà di sistemai ceramici può essere realizzata semplicemente modificando le proporzioni e la composizione dei polimeri e dei fillers di partenza. La prima parte dei capitoli seguenti sarà imperniata sulla realizzazione di particolari ceramici e vetro-ceramiche molto conosciuti per le loro pronunciate proprietà biologiche, oltre che sulla loro formatura in strutture adeguate in applicazioni biomedicali come impianti per rigenerazione ossea. Infatti, parallelamente ai biovetri, altre formulazioni bioceramiche hanno ricevuto recentemente un interesse crescente nel campo biomedicale, in virtù della loro capacità di stimolare i tessuti biologici ad auto-ripararsi. Le formulazioni qui sviluppate appartengono prevalentemente ai sistemi di ossidi del tipo CaO-SiO2 o CaO-MgO-SiO2, ma alcune fasi cristalline sono anche state combinate tra loro per ottenere formulazioni composite, oppure sono state rivestite con altri materiali, come l’idrossiapatite, esibenti proprietà simili a quelle dell’osso naturale sotto il punto di vista sia chimico che strutturale, al fine di incrementarne ulteriormente la bioattività. In questo contesto, i materiali sviluppati sono stati caratterizzati non solo dal punto di vista microstrutturale, meccanico e fisico, ma è stato studiato anche il loro comportamento sotto il profilo biologico. Inoltre, sfruttando il concetto di multifunzionalità che caratterizza alcuni silicati, oltre alle profonde analogie in termini di struttura cristallina e di caratteristiche di processo, è stato possibile stabilire un filo conduttore tra i biosilicati sopra menzionati e altri silicati con altre applicazioni funzionali avanzate. In quest’ottica, la tecnologia è stata estesa ad altri silicati caratterizzati da proprietà dielettriche, luminescenti e refrattarie.
Silicate ceramics from preceramic polymers and fillers
FIOCCO, LAURA
2016
Abstract
L’attività di ricerca presentata in questa tesi ha riguardato la sintesi, la caratterizzazione e l’ottimizzazione di ceramici silicatici, realizzati a partire dalla pirolisi controllata di polimeri preceramici caricati con fillers inorganici. Sulla base di tale metodo di sintesi, i polimeri preceramici possono essere utilizzati come precursori per l’ottenimento di silice in virtù della loro conversione da polimeri a ceramici tramite reazioni termo-ossidative. Oltre al basso costo, alla larga disponibilità e alla semplicità di utilizzo, un ulteriore vantaggio riguarda la fabbricazione del ceramico finale dal punto di vista del processo. Infatti, il componente può essere formato sfruttando le convenzionali tecniche di formatura per i materiali polimerici, sfruttando la presenza di una componente polimerica nel sistema prima di imporne la reticolazione. Tali semplici tecniche di formatura includono anche la realizzazione di componenti densi, tramite pressatura, o di corpi altamente porosi, tramite stampaggio 3-D diretto o schiumaggio delle miscele preceramiche, prima di ceramizzarle. L’inserimento di fillers, che generalmente si suddividono in attivi e passivi, è considerata una delle più efficaci strategie per ridurre il ritiro dimensionale e la formazione di macrodifetti, che inevitabilmente hanno luogo durante la conversione da materiale polimerico a ceramico, permettendo la realizzazione di componenti relativamente spessi. Un approccio più innovativo relativo all’uso di fillers reattivi, invece, riguarda l’introduzione di fillers come precursori di ossidi che possano reagire completamente con il residuo ceramico dei precursori polimerici, piuttosto che finalizzati a compensare il ritiro dimensionale dei componenti. Dalle reazioni tra i precursori polimerici e i fillers reattivi durante la pirolisi, risulta la formazione di fasi cristalline specifiche, che generalmente non sono ottenibili in modo diretto dal semplice trattamento termico dei precursori polimerici. Seguendo tale processo di sintesi, la presente tesi di dottorato ha avuto come obiettivo lo studio delle applicazioni che tale tecnica potrebbe offrire, partendo da miscele a base di polimeri siliconici caricati con filler reattivi. In questo modo, i vantaggi derivanti dalla presenza di una componente polimerica, sfruttati soprattutto in fase di formatura, possono anche essere combinati con i vantaggi offerti dall’intero ciclo produttivo di ceramici da polimeri preceramici, portando alla realizzazione di componenti ceramici a temperature abbastanza basse (entro i 1200 °C) e evitando i metodi di sintesi più convenzionali. Nel presento lavoro di ricerca, i fillers incorporati nelle miscele preceramiche sono anche stati sfruttati come agenti schiumanti o formatori di fase liquida, permettendo rispettivamente lo schiumaggio diretto di componenti altamente porosi in un caso e l’ottenimento di vetro-ceramiche nel secondo. Ad ogni modo, come già spiegato, il fine principale dell’uso dei fillers, qui, è stato il loro utilizzo come precursori di ossidi, in modo da permettere, dopo ceramizzazione, la sintesi di fasi ceramiche cristalline di specifica composizione, direttamente ottenibili dalla reazione tra il residuo ceramico dei precursori polimerici e gli ossidi provenienti dalla decomposizione termica dei fillers reattivi. La tipologia di fillers può essere adeguatamente modificata a seconda della composizione finale desiderata; di conseguenza, un’enorme varietà di sistemai ceramici può essere realizzata semplicemente modificando le proporzioni e la composizione dei polimeri e dei fillers di partenza. La prima parte dei capitoli seguenti sarà imperniata sulla realizzazione di particolari ceramici e vetro-ceramiche molto conosciuti per le loro pronunciate proprietà biologiche, oltre che sulla loro formatura in strutture adeguate in applicazioni biomedicali come impianti per rigenerazione ossea. Infatti, parallelamente ai biovetri, altre formulazioni bioceramiche hanno ricevuto recentemente un interesse crescente nel campo biomedicale, in virtù della loro capacità di stimolare i tessuti biologici ad auto-ripararsi. Le formulazioni qui sviluppate appartengono prevalentemente ai sistemi di ossidi del tipo CaO-SiO2 o CaO-MgO-SiO2, ma alcune fasi cristalline sono anche state combinate tra loro per ottenere formulazioni composite, oppure sono state rivestite con altri materiali, come l’idrossiapatite, esibenti proprietà simili a quelle dell’osso naturale sotto il punto di vista sia chimico che strutturale, al fine di incrementarne ulteriormente la bioattività. In questo contesto, i materiali sviluppati sono stati caratterizzati non solo dal punto di vista microstrutturale, meccanico e fisico, ma è stato studiato anche il loro comportamento sotto il profilo biologico. Inoltre, sfruttando il concetto di multifunzionalità che caratterizza alcuni silicati, oltre alle profonde analogie in termini di struttura cristallina e di caratteristiche di processo, è stato possibile stabilire un filo conduttore tra i biosilicati sopra menzionati e altri silicati con altre applicazioni funzionali avanzate. In quest’ottica, la tecnologia è stata estesa ad altri silicati caratterizzati da proprietà dielettriche, luminescenti e refrattarie.File | Dimensione | Formato | |
---|---|---|---|
Fiocco_Laura_tesi.pdf
accesso aperto
Dimensione
15.89 MB
Formato
Adobe PDF
|
15.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/97755
URN:NBN:IT:UNIPD-97755