Planets in multiplanetary systems offer a unique opportunity for comparative planetology. The study of well-characterized systems allow us to investigate the formation and evolution processes, by constraining theory and helping to discriminate among competing models. To better understand exoplanetary systems complexity, it is essential to build a robust sample of well-characterized multiplanetary systems. Currently, ultra-precise photometers and high-resolution spectrographs can be used to infer accurate planetary radii and masses, needed to determine the average density and provide clues on the inner bulk composition, which is fundamental to obtain a complete characterization of a system in combination with the orbital architecture. This thesis is motivated by improving our knowledge of multiplanetary systems. On one side, we focused on the characterization of a new multiplanetary system orbiting the star TOI-561. This star was initially observed by TESS, which identified the presence of three transiting candidates. We followed-up the system with HARPS-N, collecting 82 high-resolution radial velocities (RVs). TOI-561, an old, metal-poor, and alpha-enhanced late-G dwarf, belongs to the thick-disk, and it is one of the few stars of this Galactic population that hosts a multiplanetary system. From the RV analysis we discovered two additional external planets. However, RVs could not confirm the outermost TESS candidate, which would also make the system dynamically unstable. We demonstrated that the two transits initially associated with this candidate are instead due to single transits of the two planets discovered using RVs. We proposed a final configuration with four transiting planets: an ultra-short period (USP) super-Earth (TOI-561 b) and three mini-Neptunes (TOI-561 c, d, and e). The unusual density of TOI-561 b, which is the lowest density USP planet known to date, and the interesting system configuration called for follow-up studies. We therefore collected a second season of 62 HARPS-N RVs. Moreover, we collected ultra-high precision photometric data with CHEOPS, observing various transits of TOI-561 b and c, and one transit of the previously single-transiting planet TOI-561 d. Our global analysis, including also new TESS observations, confirmed the four-planet configuration, as well as the low density of TOI-561 b, which, given the low stellar metallicity, is effectively consistent with the general bulk density-stellar metallicity trend. The precise masses and radii obtained for the four planets allowed us to conduct interior structure and atmospheric escape modelling. Finally, we identified an additional long-period signal in the RVs, which could be due to either an external planetary companion or to stellar magnetic activity. In the second part of the thesis, we focused on the development of a new tool for the characterization of interacting multiplanetary systems showing transit time variations (TTVs). In presence of mutual gravitational interactions, the most consistent way to analyze photometric and spectroscopic data is through the photodynamical approach, which combines photometric and dynamical analysis to simultaneously determine mass and radius of both the star and planets accounting for the gravitational dynamic interactions via an N-body simulations. We implemented our Python version of a photodynamical code, using the the batman package for transit modelling, the orbital integrator rebound for N-body integration, and determining the best combination of the orbital parameters using a Bayesian analysis. We started testing the code on the well-known WASP-47 system, obtaining promising results. We also used some code functionalities to perform new dynamical analysis of the TOI-836 and Kepler-37 systems. Once completed, optimized, and definitely validated, we will publicly release the code, which will be an an important tool for the characterization of known and newly-detected systems showing TTVs.
Gli esopianeti orbitanti in sistemi multipli offrono un’opportunità unica per condurre analisi comparative e indagare i processi di formazione ed evoluzione planetaria. Lo studio dei sistemi multipli può aiutare a delineare e testare nuove teorie e modelli. Per questo, è essenziale costruire un campione significativo di sistemi multipli caratterizzati con precisione. Oggi, grazie a strumenti tecnologicamente sempre più avanzati, possiamo determinare con precisione raggio, massa e densità media di un numero crescente di esopianeti. Dalla densità si può stimare la composizione interna, un dato fondamentale per ottenere una visione completa di un sistema, insieme alla determinazione della sua architettura. Questa tesi si basa sull'ampliamento della conoscenza dei sistemi planetari multipli e si sviluppa su due fronti. Da un lato, ci siamo concentrati sulla caraterizzazione di un nuovo sistema planetario orbitante la stella TOI-561. Questa stella è stata osservata dal satellite TESS, che ha identificato tre candidati pianeti transitanti. Abbiamo poi osservato TOI-561 con lo spettroscopio HARPS-N, ottenendo 82 velocità radiali (RV). TOI-561 è una delle poche stelle appartenti alla popolazione galattica di ‘‘thick-disk’’ ad ospitare un sistema multiplo. Dall’analisi delle RV abbiamo identificato due nuovi pianeti esterni, ma non è stato possibile identificare il segnale del terzo candidato indicato da TESS, che avrebbe inoltre reso il sistema dinamicamente instabile. Abbiamo dimostrato che i due transiti inizialmente associati a questo candidato erano transiti singoli dei due pianeti identificati nelle RV. La nostra configurazione finale prevede la presenza di quattro pianeti transitanti: una super-Terra a periodo ultra breve (TOI-561 b) e tre mini-Nettuni (TOI-561 c, d, e). Data la peculiarità di TOI-561 b, avente la densità più bassa tra tutti i pianeti noti a periodo ultra breve, e l'interessante architettura del sistema, abbiamo ottenuto 62 nuove RV di TOI-561 con HARPS-N. Inoltre, abbiamo raccolto dati con il telescopio spaziale CHEOPS, ottenendo fotometria ad altissima precisione di TOI-561 b, c ed osservando un secondo transito di TOI-561 d, che presentava solamente un transito nella curva di luce TESS. La nostra nuova analisi, con anche nuove osservazioni TESS, ha confermato la configuazione a quattro pianeti, così come il primato di TOI-561 b per la minor densità. Grazie alla precisione ottenuta nelle misure di raggio e massa dei quattro pianeti, abbiamo potuto modellare la loro struttura interna e la loro evoluzione atmosferica. Infine, abbiamo identificato nelle RV un segnale a lungo periodo, spiegabile sia dalla presenza di un pianeta esterno sia ad attività magnetica stellare. Dall’altro lato, abbiamo sviluppato un software per l’analisi di sistemi multipli con pianeti che interagiscono gravitazionalmente e che mostrano variazioni dei tempi di transito. In questo caso, l’approccio più coerente ed informativo è il cosiddetto metodo fotodinamico, che permette di combinare analisi fotometrica e dinamica per determinare simultaneamente raggio e massa della stella e dei pianeti, tenendo conto delle interazioni gravitazionali mutue grazie ad una simulazione ad N-corpi. Abbiamo implementato la nostra versione in Python di un codice fotodinamico, usando il software batman per l’analisi fotometrica, l’integratore numerico rebound per l’integrazione ad N-corpi e utilizzando metodi Bayesiani per ottenere la miglior combinazione dei parametri orbitali. Abbiamo iniziato a testare il codice sul noto sistema WASP-47, con risultati promettenti. Abbiamo poi utilizzato alcune sue funzionalità per analizzare dinamicamente i sistemi multipli TOI-836 e Kepler-37. Una volta terminato, ottimizzato e validato in maniera definitiva, renderemo il codice pubblicamente usufruibile perchè diventi un importante strumento per la caratterizzazione di sistemi multipli interagenti.
Ricerca e caratterizzazione di sistemi planetari multipli tramite dati da terra e da spazio
LACEDELLI, GAIA
2022
Abstract
Planets in multiplanetary systems offer a unique opportunity for comparative planetology. The study of well-characterized systems allow us to investigate the formation and evolution processes, by constraining theory and helping to discriminate among competing models. To better understand exoplanetary systems complexity, it is essential to build a robust sample of well-characterized multiplanetary systems. Currently, ultra-precise photometers and high-resolution spectrographs can be used to infer accurate planetary radii and masses, needed to determine the average density and provide clues on the inner bulk composition, which is fundamental to obtain a complete characterization of a system in combination with the orbital architecture. This thesis is motivated by improving our knowledge of multiplanetary systems. On one side, we focused on the characterization of a new multiplanetary system orbiting the star TOI-561. This star was initially observed by TESS, which identified the presence of three transiting candidates. We followed-up the system with HARPS-N, collecting 82 high-resolution radial velocities (RVs). TOI-561, an old, metal-poor, and alpha-enhanced late-G dwarf, belongs to the thick-disk, and it is one of the few stars of this Galactic population that hosts a multiplanetary system. From the RV analysis we discovered two additional external planets. However, RVs could not confirm the outermost TESS candidate, which would also make the system dynamically unstable. We demonstrated that the two transits initially associated with this candidate are instead due to single transits of the two planets discovered using RVs. We proposed a final configuration with four transiting planets: an ultra-short period (USP) super-Earth (TOI-561 b) and three mini-Neptunes (TOI-561 c, d, and e). The unusual density of TOI-561 b, which is the lowest density USP planet known to date, and the interesting system configuration called for follow-up studies. We therefore collected a second season of 62 HARPS-N RVs. Moreover, we collected ultra-high precision photometric data with CHEOPS, observing various transits of TOI-561 b and c, and one transit of the previously single-transiting planet TOI-561 d. Our global analysis, including also new TESS observations, confirmed the four-planet configuration, as well as the low density of TOI-561 b, which, given the low stellar metallicity, is effectively consistent with the general bulk density-stellar metallicity trend. The precise masses and radii obtained for the four planets allowed us to conduct interior structure and atmospheric escape modelling. Finally, we identified an additional long-period signal in the RVs, which could be due to either an external planetary companion or to stellar magnetic activity. In the second part of the thesis, we focused on the development of a new tool for the characterization of interacting multiplanetary systems showing transit time variations (TTVs). In presence of mutual gravitational interactions, the most consistent way to analyze photometric and spectroscopic data is through the photodynamical approach, which combines photometric and dynamical analysis to simultaneously determine mass and radius of both the star and planets accounting for the gravitational dynamic interactions via an N-body simulations. We implemented our Python version of a photodynamical code, using the the batman package for transit modelling, the orbital integrator rebound for N-body integration, and determining the best combination of the orbital parameters using a Bayesian analysis. We started testing the code on the well-known WASP-47 system, obtaining promising results. We also used some code functionalities to perform new dynamical analysis of the TOI-836 and Kepler-37 systems. Once completed, optimized, and definitely validated, we will publicly release the code, which will be an an important tool for the characterization of known and newly-detected systems showing TTVs.File | Dimensione | Formato | |
---|---|---|---|
tesi_definitiva_Gaia_Lacedelli.pdf
accesso aperto
Dimensione
31.3 MB
Formato
Adobe PDF
|
31.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/97846
URN:NBN:IT:UNIPD-97846