We compute the Minimal Entropy for every closed, orientable 3-manifold, showing that its cube equals the sum of the cubes of the minimal entropies of each hyperbolic component arising from the JSJ decomposition of each prime summand. As a consequence we show that the cube of the Minimal Entropy is additive with respect to both the prime and the JSJ decomposition. This answers a conjecture asked by Anderson and Paternain for irreducible manifolds.
Minimal entropy of 3-manifolds
Pieroni, Erika
2019
Abstract
We compute the Minimal Entropy for every closed, orientable 3-manifold, showing that its cube equals the sum of the cubes of the minimal entropies of each hyperbolic component arising from the JSJ decomposition of each prime summand. As a consequence we show that the cube of the Minimal Entropy is additive with respect to both the prime and the JSJ decomposition. This answers a conjecture asked by Anderson and Paternain for irreducible manifolds.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_dottorato_Pieroni.pdf
Open Access dal 25/12/2019
Licenza:
Tutti i diritti riservati
Dimensione
2.36 MB
Formato
Adobe PDF
|
2.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14242/97926
Il codice NBN di questa tesi è
URN:NBN:IT:UNIROMA1-97926