We compute the Minimal Entropy for every closed, orientable 3-manifold, showing that its cube equals the sum of the cubes of the minimal entropies of each hyperbolic component arising from the JSJ decomposition of each prime summand. As a consequence we show that the cube of the Minimal Entropy is additive with respect to both the prime and the JSJ decomposition. This answers a conjecture asked by Anderson and Paternain for irreducible manifolds.

Minimal entropy of 3-manifolds

Pieroni, Erika
2019

Abstract

We compute the Minimal Entropy for every closed, orientable 3-manifold, showing that its cube equals the sum of the cubes of the minimal entropies of each hyperbolic component arising from the JSJ decomposition of each prime summand. As a consequence we show that the cube of the Minimal Entropy is additive with respect to both the prime and the JSJ decomposition. This answers a conjecture asked by Anderson and Paternain for irreducible manifolds.
18-gen-2019
Inglese
minimal entropy; 3-manifolds; barycenter method; Riemannian geometry
SAMBUSETTI, Andrea
GARRONI, Adriana
Università degli Studi di Roma "La Sapienza"
File in questo prodotto:
File Dimensione Formato  
Tesi_dottorato_Pieroni.pdf

Open Access dal 25/12/2019

Licenza: Tutti i diritti riservati
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/97926
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA1-97926