This thesis focuses on the XY model, that is the simplest continuous spin model, used for describing numerous physical systems, from random lasers to superconductors, from synchronization problems to superfluids. It is studied for different sources of quenched disorder: random couplings, random fields, or both them. The belief propagation algorithm and the cavity method are exploited to solve the model on the sparse topology provided by Bethe lattices. It is found that the discretized version of the XY model, the so-called Q-state clock model, provides a reliable and efficient proxy for the continuous model with an error going to zero exponentially in Q, so implying a remarkable speedup in numerical simulations. Interesting results regard the low temperature solution of the spin glass XY model, which is by far more unstable toward the replica symmetry broken phase with respect to what happens in discrete models. Moreover, also the random field XY model possesses this replica symmetry broken phase, in contrast to the sparse random field Ising model. Then, instabilities of the spin glass XY model in a field are characterized, finding different critical lines according to the different symmetries of the external field. Finally, inherent structures of the energy landscape of the spin glass XY model in a random field are described, finding a connection between the localization of soft modes studied via the Hessian and the replica symmetry breaking on sparse graphs studied via belief propagation.

Questa tesi si concentra sul modello XY, il più semplice modello con spin continui, usato per descrivere diversi sistemi fisici, dai random laser ai superconduttori, dal problema della sincronizzazione ai superfluidi. Viene studiato per diverse sorgenti di disordine quenched: accoppiamenti random, campi random, o entrambi. Il modello XY viene risolto su grafi di Bethe grazie all'algoritmo di belief propagation e al metodo della cavità. Si trova che la versione discreta del modello XY, il cosiddetto clock model a Q stati, fornisce un'approssimazione affidabile ed efficiente del modello continuo con un errore che va a zero esponenzialmente in Q, fornendo così un notevole guadagno nelle simulazioni numeriche. La soluzione di bassa temperatura riserva risultati interessanti e inaspettati, essendo di gran lunga più instabile verso la rottura di simmetria delle repliche rispetto a quanto accade nei modelli discreti. Inoltre, anche il modello XY ferromagnetico in campo random mostra una fase con rottura di simmetria delle repliche, a differenza di quanto accade nel modello di Ising in campo random. Poi, vengono caratterizzate le instabilità del modello XY spin glass in campo magnetico esterno, trovando così diverse linee critiche a seconda delle simmetrie del campo esterno. Infine, vengono studiate le strutture inerente del panorama energetico del modello XY spin glass in campo random, trovando una connessione tra la localizzazione dei modi soffici studiati attraverso l'Hessiano e la rottura della simmetria delle repliche su grafi diluiti studiati attraverso l'algoritmo di belief propagation.

Critical properties of disordered XY model on sparse random graphs

LUPO, COSIMO
2017

Abstract

This thesis focuses on the XY model, that is the simplest continuous spin model, used for describing numerous physical systems, from random lasers to superconductors, from synchronization problems to superfluids. It is studied for different sources of quenched disorder: random couplings, random fields, or both them. The belief propagation algorithm and the cavity method are exploited to solve the model on the sparse topology provided by Bethe lattices. It is found that the discretized version of the XY model, the so-called Q-state clock model, provides a reliable and efficient proxy for the continuous model with an error going to zero exponentially in Q, so implying a remarkable speedup in numerical simulations. Interesting results regard the low temperature solution of the spin glass XY model, which is by far more unstable toward the replica symmetry broken phase with respect to what happens in discrete models. Moreover, also the random field XY model possesses this replica symmetry broken phase, in contrast to the sparse random field Ising model. Then, instabilities of the spin glass XY model in a field are characterized, finding different critical lines according to the different symmetries of the external field. Finally, inherent structures of the energy landscape of the spin glass XY model in a random field are described, finding a connection between the localization of soft modes studied via the Hessian and the replica symmetry breaking on sparse graphs studied via belief propagation.
16-feb-2017
Inglese
Questa tesi si concentra sul modello XY, il più semplice modello con spin continui, usato per descrivere diversi sistemi fisici, dai random laser ai superconduttori, dal problema della sincronizzazione ai superfluidi. Viene studiato per diverse sorgenti di disordine quenched: accoppiamenti random, campi random, o entrambi. Il modello XY viene risolto su grafi di Bethe grazie all'algoritmo di belief propagation e al metodo della cavità. Si trova che la versione discreta del modello XY, il cosiddetto clock model a Q stati, fornisce un'approssimazione affidabile ed efficiente del modello continuo con un errore che va a zero esponenzialmente in Q, fornendo così un notevole guadagno nelle simulazioni numeriche. La soluzione di bassa temperatura riserva risultati interessanti e inaspettati, essendo di gran lunga più instabile verso la rottura di simmetria delle repliche rispetto a quanto accade nei modelli discreti. Inoltre, anche il modello XY ferromagnetico in campo random mostra una fase con rottura di simmetria delle repliche, a differenza di quanto accade nel modello di Ising in campo random. Poi, vengono caratterizzate le instabilità del modello XY spin glass in campo magnetico esterno, trovando così diverse linee critiche a seconda delle simmetrie del campo esterno. Infine, vengono studiate le strutture inerente del panorama energetico del modello XY spin glass in campo random, trovando una connessione tra la localizzazione dei modi soffici studiati attraverso l'Hessiano e la rottura della simmetria delle repliche su grafi diluiti studiati attraverso l'algoritmo di belief propagation.
RICCI TERSENGHI, Federico
TESTA, Massimo
Università degli Studi di Roma "La Sapienza"
File in questo prodotto:
File Dimensione Formato  
Tesi dottorato Lupo

accesso aperto

Dimensione 4.51 MB
Formato Unknown
4.51 MB Unknown Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/98350
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA1-98350