Electric propulsion, characterized by a high specific impulse and high efficiency, is a very attractive solution in the field of space propulsion; especially in the growing market of low-cost satellites, where the reduction of propellant mass is one of the main issues. In the last decade, much effort has been put into the development and study of electric propulsion thrusters called Helicon Plasma Thruster (HPT), an electric propulsion thruster in which thrust is obtained by accelerating, through a magnetic nozzle (MN), the plasma produced in a Helicon source. T4i - Technology for Propulsion and Innovation, in collaboration with the University of Padova, has developed Regulus, a 50W HPT thruster, whose demonstration in orbit is currently underway. However, the optimization and physical investigation to identify the driving parameters for the plasma source and magnetic nozzle design of REGULUS is ongoing. The performance of a Helicon Plasma Thruster (thrust and specific impulse) is closely related to how the plasma is produced and accelerated; to optimize a helicon thruster it is therefore essential to develop a numerical code that allows to study the physics of the plasma inside the source and the magnetic nozzle. However, despite the simple design, the plasma physics behind a helicon thruster is extremely complex, making numerical modelling extremely difficult and currently under study by several research centers. 3D-VIRTUS, a fluid code developed internally by the University of Padova and Bologna, allows to simulate the plasma dynamics inside the source. This fluid code is not usable for the study of the plume and the magnetic noozle, where the plasma density drops by several orders of magnitude. Only recently 3D simulation of the plasma dynamics of a MN have been computationally affordable: I have investigated how to model the plasma dynamics of the magnetic noozle and I developed a full kinetic 3D Particle-In-Cell (PIC) code with Monte Carlo collisions, called ProPic, specifically designed to simulate the plasma dynamics of the magnetic noozle of a helicon thruster in a non axysimmetric domain. The theory, algorithms, and boundary conditions that I used for simulating the magnetic noozle have been studied, developed, and experimentally validated. Further studies have allowed to use ProPic for the evaluation of the mutual interaction between spacecraft, plasma plume, and ambient plasma. Furthermore, for the first time in literature, a numerical study of the MN dynamics in a cluster of HPTs has been presented. A numerical suite, developed by the University of Padua and the University of Bologna, includes both numerical codes and PIC codes was developed in order to study a Helicon thruster in its entirety and to optimize its performance. This numerical suite was experimentally validated and used by T4i to study the propulsive performance and interactions of an HPT with the satellite in orbit and the ambient plasma.
La propulsione elettrica, caratterizzata da un alto impulso specifico e da un'alta efficienza, è una soluzione molto attraente nel campo della propulsione spaziale; soprattutto nel crescente mercato dei satelliti a basso costo, dove la riduzione della massa del propellente è una delle principali questioni. Negli ultimi dieci anni, molti sforzi sono stati fatti per lo sviluppo e lo studio di propulsori elettrici chiamati Helicon Plasma Thruster (HPT), un propulsore elettrico in cui la spinta viene ottenuta accelerando, attraverso un ugello magnetico (MN), il plasma prodotto in una sorgente Helicon. T4i - Technology for Propulsion and Innovation, in collaborazione con l'Università di Padova, ha sviluppato Regulus, un propulsore HPT da 50W, la cui dimostrazione in orbita è attualmente in svolgimento. L'ottimizzazione e l'indagine fisica per identificare i parametri di guida per la progettazione della sorgente di plasma e dell'ugello magnetico di REGULUS è in corso. Le prestazioni di un Helicon Plasma Thruster (spinta e impulso specifico) sono strettamente correlate a come viene prodotto e accelerato il plasma; per ottimizzare un propulsore helicon è quindi essenziale sviluppare un codice numerico che consenta di studiare la fisica del plasma all'interno della sorgente e dell'ugello magnetico. Tuttavia, nonostante il design semplice, la fisica del plasma dietro un propulsore helicon è estremamente complessa, rendendo la modellazione numerica estremamente difficile e attualmente in studio da diversi centri di ricerca. 3D-VIRTUS, un codice fluido sviluppato internamente dall'Università di Padova e Bologna, consente di simulare la dinamica del plasma all'interno della sorgente. Questo codice fluido non è utilizzabile per lo studio del plume e dell'ugello magnetico, dove la densità del plasma scende di diversi ordini di grandezza. Solo di recente le simulazioni 3D della dinamica del plasma di un MN sono state computazionalmente accessibili: ho indagato come modellare la dinamica del plasma dell'ugello magnetico e ho sviluppato un codice PIC 3D completo a collisioni Monte Carlo, chiamato ProPic, specificamente progettato per simulare la dinamica del plasma dell'ugello magnetico di un propulsore helicon in un dominio non assialsimmetrico. La teoria, gli algoritmi e le condizioni al contorno che ho usato per simulare l'ugello magnetico sono stati studiati, sviluppati e sperimentalmente validati. Ulteriori studi hanno permesso di utilizzare ProPic per la valutazione dell'interazione reciproca tra satellite, plume di plasma e plasma ambiente. Inoltre, per la prima volta in letteratura, è stato presentato uno studio numerico della dinamica del MN in un cluster di HPT. Una suite numerica, sviluppata dall'Università di Padova e dall'Università di Bologna, include sia codici numerici che codici PIC è stato sviluppato per studiare un propulsore Helicon nella sua interezza e per ottimizzarne le prestazioni. Questa suite numerica è stata sperimentalmente validata e utilizzata da T4i per studiare le prestazioni propulsive e le interazioni di un HPT con il satellite in orbita e il plasma ambiente.
Optimization of the magnetic nozzle of a 50 W helicon plasma thruster
DI FEDE, SIMONE
2023
Abstract
Electric propulsion, characterized by a high specific impulse and high efficiency, is a very attractive solution in the field of space propulsion; especially in the growing market of low-cost satellites, where the reduction of propellant mass is one of the main issues. In the last decade, much effort has been put into the development and study of electric propulsion thrusters called Helicon Plasma Thruster (HPT), an electric propulsion thruster in which thrust is obtained by accelerating, through a magnetic nozzle (MN), the plasma produced in a Helicon source. T4i - Technology for Propulsion and Innovation, in collaboration with the University of Padova, has developed Regulus, a 50W HPT thruster, whose demonstration in orbit is currently underway. However, the optimization and physical investigation to identify the driving parameters for the plasma source and magnetic nozzle design of REGULUS is ongoing. The performance of a Helicon Plasma Thruster (thrust and specific impulse) is closely related to how the plasma is produced and accelerated; to optimize a helicon thruster it is therefore essential to develop a numerical code that allows to study the physics of the plasma inside the source and the magnetic nozzle. However, despite the simple design, the plasma physics behind a helicon thruster is extremely complex, making numerical modelling extremely difficult and currently under study by several research centers. 3D-VIRTUS, a fluid code developed internally by the University of Padova and Bologna, allows to simulate the plasma dynamics inside the source. This fluid code is not usable for the study of the plume and the magnetic noozle, where the plasma density drops by several orders of magnitude. Only recently 3D simulation of the plasma dynamics of a MN have been computationally affordable: I have investigated how to model the plasma dynamics of the magnetic noozle and I developed a full kinetic 3D Particle-In-Cell (PIC) code with Monte Carlo collisions, called ProPic, specifically designed to simulate the plasma dynamics of the magnetic noozle of a helicon thruster in a non axysimmetric domain. The theory, algorithms, and boundary conditions that I used for simulating the magnetic noozle have been studied, developed, and experimentally validated. Further studies have allowed to use ProPic for the evaluation of the mutual interaction between spacecraft, plasma plume, and ambient plasma. Furthermore, for the first time in literature, a numerical study of the MN dynamics in a cluster of HPTs has been presented. A numerical suite, developed by the University of Padua and the University of Bologna, includes both numerical codes and PIC codes was developed in order to study a Helicon thruster in its entirety and to optimize its performance. This numerical suite was experimentally validated and used by T4i to study the propulsive performance and interactions of an HPT with the satellite in orbit and the ambient plasma.File | Dimensione | Formato | |
---|---|---|---|
SimoneTesiPDFA.pdf
embargo fino al 21/03/2026
Dimensione
12.15 MB
Formato
Adobe PDF
|
12.15 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/98400
URN:NBN:IT:UNIPD-98400