Isoprene is a volatile C5 hydrocarbon hemiterpene emitted from many terrestrial plants as a major source in nature. It is produced from petrochemical routes and used as feedstock for various products such as adhesives, paints and primarily synthetic rubber in the industry. At the moment, the highest bioproduction of isoprene is achieved in Escherichia coli, while there is still a long way to go to satisfy the industry-scale needs due to the low yield and high cultivation cost. The major bottlenecks of isoprene yield are limited identification of isoprene synthase (IspS) genes available and low catalytic activities of IspS. Sustainable isoprene production using solar energy and CO2 by eukaryotic microalgae is an ideal way to reduce the cultivation cost. However, there has been no heterologous isoprene synthesis achieved in eukaryotic microalgae so far. Thus, our project aims to identification of novel IspS genes from Arecaceae family, functional characterization of IspS and heterologous isoprene production in microalgae. In this study, three novel IspS genes were identified from palm species including Chamaerops humilis, Sabal minor and Copernicia prunifera. The expressions of IspS recombinant proteins in E. coli were not successful as they were not expressed at all or mostly precipitated as inclusion bodies. To compare the relative abilities of isoprene synthesis and explore the physiological functions of isoprene emission, the IspS genes were over-expressed in the model plant of Arabidopsis thaliana. The isoprene emission screening showed that ChumIspS and CpruIspS transgenic Arabidopsis had relatively higher isoprene emissions than those of SminIspS transgenic Arabidopsis. Since limited information is available on the responses of isoprene emitter to abiotic stresses except for heat and oxidative stresses, ChumIspS or CpruIspS transgenic lines were used to study the physiological responses under salinity, exogenous ABA and drought treatment. Under salinity stress, ChumIspS or CpruIspS transgenic lines had similar seedlings growth as wild type. Under ABA treatment, ChumIspS had similar seeds germination and seedlings growth as wild type. These results indicated that isoprene was not involved in mediating salinity or ABA responses during seeds germination and post-germination stages. Under drought stress, CpruIspS transgenic lines showed positive morphological and physiological responses throughout the whole plant life cycle in terms of germination rate, green cotyledon formation rate, fresh weight, chlorophyll content, water loss rate and survival rate. The relative expression level of several stress-responsive genes indicated that isoprene mediated drought responses in a tissue-specific manner and probably through ABA-dependent and ABA-independent pathways. The expression of IspS did not result in obvious isoprene emission in the model microalgae of Nannochloropsis gaditana, which might be related to the relatively low-level expression or the unknown metabolic limitation. To further explore the potential of Nannochloropsis for isoprene production, efficient expression system and transformation methods need to be further explored, as well as a further understanding of metabolic processes and regulatory networks within Nannochloropsis.

L'isoprene è un emiterpene idrocarburico C5 volatile emesso da molte piante terrestri, che ne costituiscono una delle principali fonti in natura. Viene anche prodotto per via petrolchimica e utilizzato come materia prima per vari prodotti quali adesivi, vernici e principalmente gomma sintetica nell'industria. Al momento, la più alta bioproduzione di isoprene viene ottenuta da Escherichia coli, ma c'è ancora molta strada da fare per soddisfare le esigenze su scala industriale a causa della bassa resa e degli alti costi di coltivazione. I principali colli di bottiglia della resa di isoprene sono l'identificazione di un numero limitato di geni per l'isoprene sintasi (IspS) e le basse attività catalitiche di IspS. La produzione sostenibile di isoprene utilizzando l'energia solare e la CO2 da parte delle microalghe eucariotiche è un modo ideale per ridurre i costi di coltivazione. Tuttavia, finora non è stata raggiunta una sintesi eterologa di isoprene nelle microalghe eucariotiche. Pertanto, il nostro progetto mira all'identificazione di nuovi geni IspS dalla famiglia delle Arecaceae, alla caratterizzazione funzionale di IspS e alla produzione eterologa di isoprene nelle microalghe. In questo studio, sono stati identificati tre nuovi geni IspS da specie di palma, tra cui Chamaerops humilis, Sabal minor e Copernicia prunifera. Le espressioni delle proteine ricombinanti IspS in E. coli non hanno avuto successo in quanto non sono state espresse affatto o per lo più precipitate come corpi di inclusione. Per confrontare le capacità relative della sintesi dell'isoprene ed esplorare le funzioni fisiologiche dell'emissione di isoprene, i geni IspS sono stati sovraespressi nella pianta modello Arabidopsis thaliana. Lo screening delle emissioni di isoprene ha mostrato che linee di Arabidopsis transgeniche sovraesprimenti ChumIspS e CpruIspS avevano emissioni di isoprene relativamente più elevate rispetto a quelle sovraesprimenti SminIspS. Poiché sono disponibili informazioni limitate sulle risposte delle piante emettitrici di isoprene agli stress abiotici ad eccezione degli stress termici e ossidativi, le linee transgeniche ChumIspS o CpruIspS sono state utilizzate per studiare le risposte fisiologiche a trattamenti quali la salinità, l’applicazione di ABA esogeno e la siccità. Sotto stress salino, le linee transgeniche ChumIspS o CpruIspS hanno avuto una crescita delle piantine simile al tipo selvatico. Ha seguito del trattamento con ABA, ChumIspS ha avuto una germinazione dei semi e una crescita delle piantine simili al tipo selvatico. Questi risultati hanno indicato che l'isoprene non era coinvolto nella mediazione delle risposte alla salinità o all’ABA durante la germinazione dei semi e le fasi post-germinazione. Sotto stress da siccità, le linee transgeniche CpruIspS hanno mostrato risposte morfologiche e fisiologiche positive durante l'intero ciclo di vita della pianta in termini di tasso di germinazione, tasso di formazione ed inverdimento dei cotiledoni, peso fresco, contenuto di clorofilla, tasso di perdita d'acqua e tasso di sopravvivenza. Il livello di espressione relativa di diversi geni reattivi allo stress ha indicato che l'isoprene media le risposte alla siccità in modo tessuto-specifico e probabilmente attraverso percorsi ABA-dipendenti e ABA-indipendenti. L'espressione di IspS non ha comportato un'evidente emissione di isoprene nelle microalghe modello Nannochloropsis gaditana, un risultato che potrebbe essere correlato all'espressione di livello relativamente basso o limitazioni metaboliche al momento sconosciute. Per chiarire meglio il potenziale di Nannochloropsis per la produzione di isoprene, è necessario esplorare ulteriormente sistemi di espressione e metodi di trasformazione più efficienti, nonché un'ulteriore comprensione dei processi metabolici e delle reti regolatorie in Nannochloropsis.

Comparative Characterization of Isoprene Synthases from Monocot Species for Improved Isoprene Production in Microalgae

YU, JIAMEI
2023

Abstract

Isoprene is a volatile C5 hydrocarbon hemiterpene emitted from many terrestrial plants as a major source in nature. It is produced from petrochemical routes and used as feedstock for various products such as adhesives, paints and primarily synthetic rubber in the industry. At the moment, the highest bioproduction of isoprene is achieved in Escherichia coli, while there is still a long way to go to satisfy the industry-scale needs due to the low yield and high cultivation cost. The major bottlenecks of isoprene yield are limited identification of isoprene synthase (IspS) genes available and low catalytic activities of IspS. Sustainable isoprene production using solar energy and CO2 by eukaryotic microalgae is an ideal way to reduce the cultivation cost. However, there has been no heterologous isoprene synthesis achieved in eukaryotic microalgae so far. Thus, our project aims to identification of novel IspS genes from Arecaceae family, functional characterization of IspS and heterologous isoprene production in microalgae. In this study, three novel IspS genes were identified from palm species including Chamaerops humilis, Sabal minor and Copernicia prunifera. The expressions of IspS recombinant proteins in E. coli were not successful as they were not expressed at all or mostly precipitated as inclusion bodies. To compare the relative abilities of isoprene synthesis and explore the physiological functions of isoprene emission, the IspS genes were over-expressed in the model plant of Arabidopsis thaliana. The isoprene emission screening showed that ChumIspS and CpruIspS transgenic Arabidopsis had relatively higher isoprene emissions than those of SminIspS transgenic Arabidopsis. Since limited information is available on the responses of isoprene emitter to abiotic stresses except for heat and oxidative stresses, ChumIspS or CpruIspS transgenic lines were used to study the physiological responses under salinity, exogenous ABA and drought treatment. Under salinity stress, ChumIspS or CpruIspS transgenic lines had similar seedlings growth as wild type. Under ABA treatment, ChumIspS had similar seeds germination and seedlings growth as wild type. These results indicated that isoprene was not involved in mediating salinity or ABA responses during seeds germination and post-germination stages. Under drought stress, CpruIspS transgenic lines showed positive morphological and physiological responses throughout the whole plant life cycle in terms of germination rate, green cotyledon formation rate, fresh weight, chlorophyll content, water loss rate and survival rate. The relative expression level of several stress-responsive genes indicated that isoprene mediated drought responses in a tissue-specific manner and probably through ABA-dependent and ABA-independent pathways. The expression of IspS did not result in obvious isoprene emission in the model microalgae of Nannochloropsis gaditana, which might be related to the relatively low-level expression or the unknown metabolic limitation. To further explore the potential of Nannochloropsis for isoprene production, efficient expression system and transformation methods need to be further explored, as well as a further understanding of metabolic processes and regulatory networks within Nannochloropsis.
22-mar-2023
Inglese
L'isoprene è un emiterpene idrocarburico C5 volatile emesso da molte piante terrestri, che ne costituiscono una delle principali fonti in natura. Viene anche prodotto per via petrolchimica e utilizzato come materia prima per vari prodotti quali adesivi, vernici e principalmente gomma sintetica nell'industria. Al momento, la più alta bioproduzione di isoprene viene ottenuta da Escherichia coli, ma c'è ancora molta strada da fare per soddisfare le esigenze su scala industriale a causa della bassa resa e degli alti costi di coltivazione. I principali colli di bottiglia della resa di isoprene sono l'identificazione di un numero limitato di geni per l'isoprene sintasi (IspS) e le basse attività catalitiche di IspS. La produzione sostenibile di isoprene utilizzando l'energia solare e la CO2 da parte delle microalghe eucariotiche è un modo ideale per ridurre i costi di coltivazione. Tuttavia, finora non è stata raggiunta una sintesi eterologa di isoprene nelle microalghe eucariotiche. Pertanto, il nostro progetto mira all'identificazione di nuovi geni IspS dalla famiglia delle Arecaceae, alla caratterizzazione funzionale di IspS e alla produzione eterologa di isoprene nelle microalghe. In questo studio, sono stati identificati tre nuovi geni IspS da specie di palma, tra cui Chamaerops humilis, Sabal minor e Copernicia prunifera. Le espressioni delle proteine ricombinanti IspS in E. coli non hanno avuto successo in quanto non sono state espresse affatto o per lo più precipitate come corpi di inclusione. Per confrontare le capacità relative della sintesi dell'isoprene ed esplorare le funzioni fisiologiche dell'emissione di isoprene, i geni IspS sono stati sovraespressi nella pianta modello Arabidopsis thaliana. Lo screening delle emissioni di isoprene ha mostrato che linee di Arabidopsis transgeniche sovraesprimenti ChumIspS e CpruIspS avevano emissioni di isoprene relativamente più elevate rispetto a quelle sovraesprimenti SminIspS. Poiché sono disponibili informazioni limitate sulle risposte delle piante emettitrici di isoprene agli stress abiotici ad eccezione degli stress termici e ossidativi, le linee transgeniche ChumIspS o CpruIspS sono state utilizzate per studiare le risposte fisiologiche a trattamenti quali la salinità, l’applicazione di ABA esogeno e la siccità. Sotto stress salino, le linee transgeniche ChumIspS o CpruIspS hanno avuto una crescita delle piantine simile al tipo selvatico. Ha seguito del trattamento con ABA, ChumIspS ha avuto una germinazione dei semi e una crescita delle piantine simili al tipo selvatico. Questi risultati hanno indicato che l'isoprene non era coinvolto nella mediazione delle risposte alla salinità o all’ABA durante la germinazione dei semi e le fasi post-germinazione. Sotto stress da siccità, le linee transgeniche CpruIspS hanno mostrato risposte morfologiche e fisiologiche positive durante l'intero ciclo di vita della pianta in termini di tasso di germinazione, tasso di formazione ed inverdimento dei cotiledoni, peso fresco, contenuto di clorofilla, tasso di perdita d'acqua e tasso di sopravvivenza. Il livello di espressione relativa di diversi geni reattivi allo stress ha indicato che l'isoprene media le risposte alla siccità in modo tessuto-specifico e probabilmente attraverso percorsi ABA-dipendenti e ABA-indipendenti. L'espressione di IspS non ha comportato un'evidente emissione di isoprene nelle microalghe modello Nannochloropsis gaditana, un risultato che potrebbe essere correlato all'espressione di livello relativamente basso o limitazioni metaboliche al momento sconosciute. Per chiarire meglio il potenziale di Nannochloropsis per la produzione di isoprene, è necessario esplorare ulteriormente sistemi di espressione e metodi di trasformazione più efficienti, nonché un'ulteriore comprensione dei processi metabolici e delle reti regolatorie in Nannochloropsis.
MOROSINOTTO, TOMAS
Università degli studi di Padova
File in questo prodotto:
File Dimensione Formato  
final_thesis_Jiamei_Yu.pdf

embargo fino al 20/09/2024

Dimensione 4.27 MB
Formato Adobe PDF
4.27 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/98462
Il codice NBN di questa tesi è URN:NBN:IT:UNIPD-98462