Collagen VI (COL6) is a distinctive extracellular matrix (ECM) protein playing a major role in the basement membrane of muscle fibers. COL6 is critical for skeletal muscle homeostasis, and mutations of COL6 genes cause congenital muscle diseases in humans, including Bethlem myopathy and Ullrich congenital muscular dystrophy. Although in the past few years, a number of pathomolecular features underlying COL6 deficiency were elucidated and some targets for prospective therapy were identified, a cure for patients is not yet available. The Col6a1 knockout (Col6a1¬–/–) mouse model, characterized by a lack of COL6, provided valuable information on the pathophysiological defects of COL6-RM, which include myofiber apoptosis, mitochondrial dysfunction and impaired regulation of autophagy, that is the major etiopathological mechanism. Thus, during the first part of my PhD I was involved in a project aimed at investigating the pro-autophagic properties of Pterostilbene (Pt), a plant-derived polyphenolic compound, and Spermidine (Spd), a cationic polyamine present in all living cells. The results I obtained with this work allowed to demonstrate that oral administration of Pt strongly reactivates autophagic flux in wild-type and Col6a1–/–mice, leading to a number of beneficial effects in Col6a1–/–mice, including muscle remodelling with decreased apoptosis and amelioration of mitochondrial ultrastructure in myofibers. Past studies showed that Spd is able to induce autophagy in skeletal muscles and ameliorate several histological parameters in Col6a1–/– mice, but none of the conditions tested in those studies were able to recover the defective muscle strength. Therefore, I carried out further work, aimed at evaluating the long-term effects elicited by oral Spd administration, and I finally found a proper regimen able to rescue muscle force in Col6a1–/–mice. The results obtained with this part of my PhD work represent a step forward for the perspective use of such nutraceutical approaches in a clinical setting and in pilot clinical trials in patients affected by COL6-related myopathies. From the mechanistic point of view, one main unsolved biological question concerning COL6 biology is the identification of surface receptor(s) transducing COL6 signals in myofibers, as well as in satellite cells (SCs), the main population of adult muscle stem cells. Indeed, COL6 is a key component of SC niche and COL6-deficient muscles display impaired muscle regeneration. In this perspective, during the second part of my PhD, I carried out a number of studies aimed at shedding light on such molecular mechanisms. These studies allowed to identify anthrax toxin receptor 2 (ANTXR2) as a candidate COL6 receptor in SCs, and they also revealed that ANTXR2 has a role in the maintenance of SCs stemness. Since it was recently demonstrated that ANTXR2 plays a central role in COL6 endocytosis, I performed further work in skeletal muscles of ANTXR2 null (Antxr2–/–) mice. In line with the working hypothesis of an essential role of ANTXR2 in COL6 turnover, the data I obtained with these studies show that Antxr2–/– muscle have markedly increased COL6 deposition in the endomysial ECM, accompanied by the expansion of perimysial ECM in an age-dependent manner. Transcriptional studies did not reveal any upregulation of COL6 genes and genes coding for other collagens, as well as of genes for the fibrotic pathway, corroborating a distinctive defect in ECM turnover. Surprisingly, these studies also revealed that Antxr2–/– mice undergo age-dependent muscle hypertrophy and fiber remodelling, thus highlighting how COL6 accumulation also impinges on muscle homeostasis. Altogether these findings point at ANTXR2 as a novel actor in COL6 signal transduction and homeostasis in skeletal muscle, providing valuable information on the mechanisms involved in stem cell-niche interactions and highlighting the dynamic nature of ECM.
Il Collagene VI (COL6) è una proteina della matrice extracellulare (MEC) localizzata a livello della membrana basale delle fibre muscolari. Il COL6 è fondamentale per l'omeostasi del muscolo scheletrico, infatti mutazioni a danno dei suoi geni portano allo sviluppo di un gruppo di patologie muscolari congenite chiamate miopatie da deficit di COL6, tra cui si annoverano la miopatia di Bethlem e la distrofia muscolare congenita di Ullrich. Sebbene negli ultimi anni siano stati chiariti molti meccanismi molecolari influenzati dalla mancanza di COL6 e siano stati identificati alcuni bersagli terapeutici, una cura per questi pazienti non è ancora disponibile. Il modello murino Col6a1 knockout (Col6a1–/–) caratterizzato da una totale mancanza di COL6 in tutti i tessuti, ha fornito preziose informazioni sui difetti fisiopatologici delle miopatie da deficit di COL6, tra cui l'apoptosi delle miofibre, la disfunzione mitocondriale e la regolazione alterata dell'autofagia, che è il principale meccanismo eziopatologico. Durante la prima parte del mio dottorato di ricerca ho contribuito a dei progetti volti ad indagare le proprietà pro-autofagiche di due molecole nutraceutiche: lo Pterostilbene (Pt) e la Spermidina (Spd). Abbiamo pubblicato che la somministrazione orale in vivo di Pt riattiva fortemente il flusso autofagico nei topi wild-type e Col6a1–/–. Inoltre, in questo lavoro abbiamo mostrato come la somministrazione di Pt eserciti molti altri effetti benefici, come la diminuzione dell'apoptosi, il miglioramento dell'ultrastruttura mitocondriale e il rimodellamento muscolare. Un lavoro del 2015 mostrò che la Spd è in grado di indurre con successo l'autofagia e migliorare diversi parametri istologici nei topi Col6a1–/–, ma nessuna delle condizioni allora testate fu in grado di portare ad un sensibile miglioramento la forza muscolare. Alla luce di questi risultati, durante il dottorato ho esteso la durata della somministrazione orale di Spd, identificando infine il regime terapeutico adeguato in grado di recuperare la forza muscolare dei topi Col6a1–/–, senza mostrare effetti collaterali. Questi lavori rappresentano un passo avanti per l'utilizzo di questi nuovi approcci nutraceutici in studi clinici pilota su pazienti affetti da miopatie da deficit di COL6. Il principale problema biologico ancora irrisolto riguardante la biologia del COL6 è l'identificazione dei recettori di membrana in grado di trasdurre i segnali del COL6 all’interno delle miofibre e delle cellule staminali muscolari. Infatti, il COL6 è anche un componente chiave della nicchia delle cellule staminali muscolari, e i muscoli privi di COL6 mostrano una rigenerazione muscolare alterata che ne aggrava il fenotipo miopatico. Durante la seconda parte del mio dottorato ho identificato il recettore della tossina dell'antrace (ANTXR2) come il possibile recettore in grado di mediare gli effetti del COL6 nelle cellule staminali muscolari, confermando il suo ruolo nel mantenimento della loro staminalità. Poiché è stato recentemente dimostrato che ANTXR2 svolge un ruolo fondamentale nell'endocitosi e nella degradazione del COL6, ho anche caratterizzato dal punto di vista istologico e biochimico il muscolo scheletrico di topi privi di ANTXR2 (Antxr2–/–). In linea con questa ipotesi, il muscolo Antxr2–/– mostra con l’età un marcato aumento della deposizione di COL6 nell'endomisio, accompagnato anche da una espansione del perimisio. Gli studi trascrizionali non hanno rivelato alcuna variazione dell’espressione genica dei geni del COL6, così come dei geni coinvolti nel processo fibrotico, confermando un possibile difetto nella degradazione della MEC. In maniera inattesa, i topi Antxr2–/– vanno incontro anche ad ipertrofia muscolare e al rimodellamento delle fibre, evidenziando così come l'accumulo di COL6 possa influire anche sull'omeostasi muscolare.
Extracellular matrix in health and disease: Collagen VI as a double-edged sword in skeletal muscle.
METTI, SAMUELE
2023
Abstract
Collagen VI (COL6) is a distinctive extracellular matrix (ECM) protein playing a major role in the basement membrane of muscle fibers. COL6 is critical for skeletal muscle homeostasis, and mutations of COL6 genes cause congenital muscle diseases in humans, including Bethlem myopathy and Ullrich congenital muscular dystrophy. Although in the past few years, a number of pathomolecular features underlying COL6 deficiency were elucidated and some targets for prospective therapy were identified, a cure for patients is not yet available. The Col6a1 knockout (Col6a1¬–/–) mouse model, characterized by a lack of COL6, provided valuable information on the pathophysiological defects of COL6-RM, which include myofiber apoptosis, mitochondrial dysfunction and impaired regulation of autophagy, that is the major etiopathological mechanism. Thus, during the first part of my PhD I was involved in a project aimed at investigating the pro-autophagic properties of Pterostilbene (Pt), a plant-derived polyphenolic compound, and Spermidine (Spd), a cationic polyamine present in all living cells. The results I obtained with this work allowed to demonstrate that oral administration of Pt strongly reactivates autophagic flux in wild-type and Col6a1–/–mice, leading to a number of beneficial effects in Col6a1–/–mice, including muscle remodelling with decreased apoptosis and amelioration of mitochondrial ultrastructure in myofibers. Past studies showed that Spd is able to induce autophagy in skeletal muscles and ameliorate several histological parameters in Col6a1–/– mice, but none of the conditions tested in those studies were able to recover the defective muscle strength. Therefore, I carried out further work, aimed at evaluating the long-term effects elicited by oral Spd administration, and I finally found a proper regimen able to rescue muscle force in Col6a1–/–mice. The results obtained with this part of my PhD work represent a step forward for the perspective use of such nutraceutical approaches in a clinical setting and in pilot clinical trials in patients affected by COL6-related myopathies. From the mechanistic point of view, one main unsolved biological question concerning COL6 biology is the identification of surface receptor(s) transducing COL6 signals in myofibers, as well as in satellite cells (SCs), the main population of adult muscle stem cells. Indeed, COL6 is a key component of SC niche and COL6-deficient muscles display impaired muscle regeneration. In this perspective, during the second part of my PhD, I carried out a number of studies aimed at shedding light on such molecular mechanisms. These studies allowed to identify anthrax toxin receptor 2 (ANTXR2) as a candidate COL6 receptor in SCs, and they also revealed that ANTXR2 has a role in the maintenance of SCs stemness. Since it was recently demonstrated that ANTXR2 plays a central role in COL6 endocytosis, I performed further work in skeletal muscles of ANTXR2 null (Antxr2–/–) mice. In line with the working hypothesis of an essential role of ANTXR2 in COL6 turnover, the data I obtained with these studies show that Antxr2–/– muscle have markedly increased COL6 deposition in the endomysial ECM, accompanied by the expansion of perimysial ECM in an age-dependent manner. Transcriptional studies did not reveal any upregulation of COL6 genes and genes coding for other collagens, as well as of genes for the fibrotic pathway, corroborating a distinctive defect in ECM turnover. Surprisingly, these studies also revealed that Antxr2–/– mice undergo age-dependent muscle hypertrophy and fiber remodelling, thus highlighting how COL6 accumulation also impinges on muscle homeostasis. Altogether these findings point at ANTXR2 as a novel actor in COL6 signal transduction and homeostasis in skeletal muscle, providing valuable information on the mechanisms involved in stem cell-niche interactions and highlighting the dynamic nature of ECM.File | Dimensione | Formato | |
---|---|---|---|
tesi_Samuele_Metti.pdf
embargo fino al 16/03/2026
Dimensione
33.83 MB
Formato
Adobe PDF
|
33.83 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/98512
URN:NBN:IT:UNIPD-98512