The research activity focuses on the constitutive modelling of the anisotropy of soils, which represents a relevant aspect of the mechanical behaviour of the same in many geotechnical applications. A non-linear anisotropic hyperelastic model in infinitesimal strain was first formulated, as a function of a series of mixed invariants of elastic strain tensor and fabric tensor, which represents at the macroscopic level the relative microstructural properties of the material. The proposed new formulation can be used to reproduce the anisotropic character of the small strain stiffness observed experimentally both in sandy and in clayey soils. The constitutive relationship was then adopted within the single surface elastoplastic model for clays proposed by Dafalias & Taiebat (2013), characterised by isotropic and rotational hardening laws. Therefore, a relationship has been identified between the internal variable that governs the anisotropy in the plastic regime and the fabric tensor defined before with reference to the reversible response. In this way, the latter ingredient is no longer constant as related to the evolution of the rotational hardening of the model. This leads to a form of elastoplastic coupling whose aspects have been evaluated with reference to a series of experimental laboratory tests carried out by Mitaritonna et al. (2014) on a reconstituted clay. The model of Dafalias & Taiebat was then reformulated according to the theory of hyperplasticity (Houlsby & Puzrin, 2000). The new formulation, besides to guarantee the respect of the laws of thermodynamics, makes it possible to introduce rigorous forms of elastoplastic coupling within the model, in which also the plastic regime is modified by virtue of the coupling. Two types of coupling were introduced, the first one through the preconsolidation pressure and the second one, accounting for the directional properties of soils, through the fabric tensor.
L'attività di ricerca verte sulla modellazione costitutiva della risposta anisotropa dei terreni, che rappresenta un aspetto rilevante del comportamento meccanico degli stessi in numerose applicazioni geotecniche. È stato dapprima formulato un modello iperelastico non lineare anisotropo in deformazioni infinitesime, in funzione di una serie di invarianti misti dei tensori di deformazione elastica e di struttura (fabric tensor), che rappresenta al livello macroscopico le relative proprietà microstrutturali del materiale. La nuova formulazione proposta può essere efficacemente impiegata per riprodurre il carattere anisotropo della rigidezza a piccole deformazioni osservato sperimentalmente sia nelle sabbie che nelle argille. Il legame costitutivo è poi stato adottato all’interno del modello elastoplastico a singola superficie per argille proposto da Dafalias & Taiebat (2013), caratterizzato da incrudimento misto isotropo e rotazionale. Si è individuata quindi una relazione tra la variabile interna che governa l’anisotropia in regime plastico ed il tensore di struttura prima definito con riferimento alla risposta reversibile. In tal modo, quest’ultimo ingrediente risulta avere un carattere evolutivo, correlato all’evoluzione dell’incrudimento rotazionale del materiale. Ciò dà luogo ad una forma di accoppiamento elastoplastico i cui aspetti quantitativi sono stati valutati con riferimento ad una serie di osservazioni sperimentali effettuate su un’argilla ricostituita in laboratorio da Mitaritonna et al. (2014). Il modello di Dafalias & Taiebat è stato in seguito riformulato secondo la teoria dell’iperplasticità (Houlsby & Puzrin, 2000). La nuova formulazione, oltre a garantire il rispetto dei principi della termodinamica, consente di introdurre all’interno del modello forme di accoppiamento elastoplastico rigorose, in cui anche il regime di risposta plastico viene modificato in virtù di tale accoppiamento. Sono stati quindi introdotti due tipi di accoppiamento, il primo in forma scalare sulla pressione di preconsolidazione e il secondo, di natura più prettamente direzionale, sul tensore di struttura.
Elastic anisotropy and elastoplastic coupling of soils: a thermodynamic approach
ROLLO, FABIO
2019
Abstract
The research activity focuses on the constitutive modelling of the anisotropy of soils, which represents a relevant aspect of the mechanical behaviour of the same in many geotechnical applications. A non-linear anisotropic hyperelastic model in infinitesimal strain was first formulated, as a function of a series of mixed invariants of elastic strain tensor and fabric tensor, which represents at the macroscopic level the relative microstructural properties of the material. The proposed new formulation can be used to reproduce the anisotropic character of the small strain stiffness observed experimentally both in sandy and in clayey soils. The constitutive relationship was then adopted within the single surface elastoplastic model for clays proposed by Dafalias & Taiebat (2013), characterised by isotropic and rotational hardening laws. Therefore, a relationship has been identified between the internal variable that governs the anisotropy in the plastic regime and the fabric tensor defined before with reference to the reversible response. In this way, the latter ingredient is no longer constant as related to the evolution of the rotational hardening of the model. This leads to a form of elastoplastic coupling whose aspects have been evaluated with reference to a series of experimental laboratory tests carried out by Mitaritonna et al. (2014) on a reconstituted clay. The model of Dafalias & Taiebat was then reformulated according to the theory of hyperplasticity (Houlsby & Puzrin, 2000). The new formulation, besides to guarantee the respect of the laws of thermodynamics, makes it possible to introduce rigorous forms of elastoplastic coupling within the model, in which also the plastic regime is modified by virtue of the coupling. Two types of coupling were introduced, the first one through the preconsolidation pressure and the second one, accounting for the directional properties of soils, through the fabric tensor.File | Dimensione | Formato | |
---|---|---|---|
Tesi_dottorato_Rollo.pdf
accesso aperto
Dimensione
8.97 MB
Formato
Adobe PDF
|
8.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/98824
URN:NBN:IT:UNIROMA1-98824