In the present work we apply High-Performance Computing techniques to two Big Data problems. The frst one deals with the analysis of large graphs by using a parallel distributed architecture, whereas the second one consists in the design and implementation of a scalable solution for fast indexing and searching of large datasets of heterogeneous documents.
HPC techniques for large scale data analysis
CARBONE, Giancarlo
2015
Abstract
In the present work we apply High-Performance Computing techniques to two Big Data problems. The frst one deals with the analysis of large graphs by using a parallel distributed architecture, whereas the second one consists in the design and implementation of a scalable solution for fast indexing and searching of large datasets of heterogeneous documents.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Tesi dottorato Carbone
accesso aperto
Dimensione
2.51 MB
Formato
Unknown
|
2.51 MB | Unknown | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14242/98935
Il codice NBN di questa tesi è
URN:NBN:IT:UNIROMA1-98935