In the present work we apply High-Performance Computing techniques to two Big Data problems. The frst one deals with the analysis of large graphs by using a parallel distributed architecture, whereas the second one consists in the design and implementation of a scalable solution for fast indexing and searching of large datasets of heterogeneous documents.

HPC techniques for large scale data analysis

CARBONE, Giancarlo
2015

Abstract

In the present work we apply High-Performance Computing techniques to two Big Data problems. The frst one deals with the analysis of large graphs by using a parallel distributed architecture, whereas the second one consists in the design and implementation of a scalable solution for fast indexing and searching of large datasets of heterogeneous documents.
12-dic-2015
Inglese
graph algorithms; GPU; high performance computing; large scale data; betweenness centrality; breadth first search; computer forensics
BERNASCHI, Massimo
PELLACINI, FABIO
BONGIOVANNI, Giancarlo
MEI, Alessandro
Università degli Studi di Roma "La Sapienza"
139
File in questo prodotto:
File Dimensione Formato  
Tesi dottorato Carbone

accesso aperto

Dimensione 2.51 MB
Formato Unknown
2.51 MB Unknown Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/98935
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA1-98935