In this thesis we will study some financial problems concerning the option pricing in complete and incomplete markets and the bond pricing in the short-term interest rates framework. We start from well known models in pricing options or zero-coupon bonds, as the Black-Scholes model and the Cox-Ingersoll-Ross model and study some their generalizations. In particular, in the first part of the thesis, we study a generalized Black-Scholes equation to derive explicit or approximate solutions of an option pricing problem in incomplete market where the incompleteness is generated by the presence of a non-traded asset. Our aim is to give a closed form representation of the indifference price by using the analytic tool of (C0) semigroup theory. The second part of the thesis deals with the problem of forecasting future interest rates from observed financial market data. We propose a new numerical methodology for the CIR framework, which we call the CIR# model, that well fits the term structure of short interest rates as observed in a real market.
Some extensions of the Black-Scholes and Cox-Ingersoll-Ross models
BUFALO, MICHELE
2019
Abstract
In this thesis we will study some financial problems concerning the option pricing in complete and incomplete markets and the bond pricing in the short-term interest rates framework. We start from well known models in pricing options or zero-coupon bonds, as the Black-Scholes model and the Cox-Ingersoll-Ross model and study some their generalizations. In particular, in the first part of the thesis, we study a generalized Black-Scholes equation to derive explicit or approximate solutions of an option pricing problem in incomplete market where the incompleteness is generated by the presence of a non-traded asset. Our aim is to give a closed form representation of the indifference price by using the analytic tool of (C0) semigroup theory. The second part of the thesis deals with the problem of forecasting future interest rates from observed financial market data. We propose a new numerical methodology for the CIR framework, which we call the CIR# model, that well fits the term structure of short interest rates as observed in a real market.File | Dimensione | Formato | |
---|---|---|---|
Tesi_dottorato_Bufalo.pdf
accesso aperto
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/98984
URN:NBN:IT:UNIROMA1-98984