In this thesis we deal with qualitative properties of solutions of the semilinear elliptic problem −∆u = f(u) in Ω u = 0 on ∂Ω, where Ω ⊆ R^N , N ≥ 2 is a smooth domain and f : R → R is a smooth function. A classical problem concerns the study of the shape of u related to the one of the domain. In particular we investigate the number of critical points of u with respect to the convexity of Ω. Both the cases of positive and sign-changing solutions are treated.

On critical points of solutions of elliptic equations

DE REGIBUS, FABIO
2022

Abstract

In this thesis we deal with qualitative properties of solutions of the semilinear elliptic problem −∆u = f(u) in Ω u = 0 on ∂Ω, where Ω ⊆ R^N , N ≥ 2 is a smooth domain and f : R → R is a smooth function. A classical problem concerns the study of the shape of u related to the one of the domain. In particular we investigate the number of critical points of u with respect to the convexity of Ω. Both the cases of positive and sign-changing solutions are treated.
9-nov-2022
Inglese
Critical points; convexity; elliptic equations
GROSSI, Massimo
Università degli Studi di Roma "La Sapienza"
File in questo prodotto:
File Dimensione Formato  
Tesi_dottorato_De Regibus.pdf

accesso aperto

Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/99134
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA1-99134