In this thesis we deal with qualitative properties of solutions of the semilinear elliptic problem −∆u = f(u) in Ω u = 0 on ∂Ω, where Ω ⊆ R^N , N ≥ 2 is a smooth domain and f : R → R is a smooth function. A classical problem concerns the study of the shape of u related to the one of the domain. In particular we investigate the number of critical points of u with respect to the convexity of Ω. Both the cases of positive and sign-changing solutions are treated.
On critical points of solutions of elliptic equations
DE REGIBUS, FABIO
2022
Abstract
In this thesis we deal with qualitative properties of solutions of the semilinear elliptic problem −∆u = f(u) in Ω u = 0 on ∂Ω, where Ω ⊆ R^N , N ≥ 2 is a smooth domain and f : R → R is a smooth function. A classical problem concerns the study of the shape of u related to the one of the domain. In particular we investigate the number of critical points of u with respect to the convexity of Ω. Both the cases of positive and sign-changing solutions are treated.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Tesi_dottorato_De Regibus.pdf
accesso aperto
Dimensione
1.31 MB
Formato
Adobe PDF
|
1.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.14242/99134
Il codice NBN di questa tesi è
URN:NBN:IT:UNIROMA1-99134