Research on humanoid robots has made significant progress in recent years, and Model Predictive Control (MPC) has seen great applicability as a technique for gait generation. The main advantages of MPC are the possibility of enforcing constraints on state and inputs, and the constant replanning which grants a degree of robustness. This thesis describes a framework based on MPC for humanoid gait generation, and analyzes some theoretical aspects which have often been neglected. In particular, the stability of the controller is proved. Due to the presence of constraints, this requires proving recursive feasibility, i.e., that the algorithm is able to recursively guarantee that a solution satisfying the constraints is found. The scheme is referred to as Intrinsically Stable MPC (IS-MPC). A basic scheme is presented, and its stability and feasibility guarantees are discussed. Then, several extensions are introduced. The guarantees of the basic scheme are carried over to a robust version of IS-MPC. Furthermore, extension to uneven ground and to a more accurate multi-mass model are discussed. Experiments on two robotic platforms (the humanoid robots HRP-4 and NAO) are presented in the concluding section.

Humanoid gait generation via MPC: stability, robustness and extensions

SCIANCA, NICOLA
2020

Abstract

Research on humanoid robots has made significant progress in recent years, and Model Predictive Control (MPC) has seen great applicability as a technique for gait generation. The main advantages of MPC are the possibility of enforcing constraints on state and inputs, and the constant replanning which grants a degree of robustness. This thesis describes a framework based on MPC for humanoid gait generation, and analyzes some theoretical aspects which have often been neglected. In particular, the stability of the controller is proved. Due to the presence of constraints, this requires proving recursive feasibility, i.e., that the algorithm is able to recursively guarantee that a solution satisfying the constraints is found. The scheme is referred to as Intrinsically Stable MPC (IS-MPC). A basic scheme is presented, and its stability and feasibility guarantees are discussed. Then, several extensions are introduced. The guarantees of the basic scheme are carried over to a robust version of IS-MPC. Furthermore, extension to uneven ground and to a more accurate multi-mass model are discussed. Experiments on two robotic platforms (the humanoid robots HRP-4 and NAO) are presented in the concluding section.
21-feb-2020
Inglese
robotics; humanoid; mpc
ORIOLO, Giuseppe
ORIOLO, Giuseppe
Università degli Studi di Roma "La Sapienza"
File in questo prodotto:
File Dimensione Formato  
Tesi_dottorato_Scianca.pdf

accesso aperto

Dimensione 32.33 MB
Formato Adobe PDF
32.33 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14242/99422
Il codice NBN di questa tesi è URN:NBN:IT:UNIROMA1-99422