L’organizzazione corporea dei vertebrati è caratterizzata da simmetria bilaterale esterna, mentre le strutture interne non presentano la stessa organizzazione ed è possibile distinguere tre tipi di asimmetrie che caratterizzano gli organi interni: asimmetrie viscerali, neuroanatomiche e funzionali. Le asimmetrie viscerali fanno riferimento ad organi impari, come il cuore o gli organi dell’apparato digerente, che sono posizionati asimmetricamente nella cavità corporea (Capdevila et al., 2000) o ad organi pari come i polmoni che, pur essendo strutture bilaterali, presentano asimmetrie morfologiche. Accanto alle asimmetrie viscerali è possibile identificare asimmetrie neuroanatomiche. Nell’uomo una struttura localizzata nell’area di Wernicke, il planum temporale, è significativamente più grande nell’emisfero sinistro rispetto all’emisfero destro (Geschwind and Levitsky, 1968). Asimmetrie neuroanatomiche sono state riscontrate anche negli uccelli, nei topi e negli scimpanzè (Cantalupo and Hopkins, 2001). Nei vertebrati inferiori un’importante asimmetria neuroanatomica si osserva nell’epitalamo. Questa regione è costituita da due strutture: l’abenula e il complesso pineale (Concha and Wilson, 2001). L’abenula è una struttura pari, ed è formata da due nuclei bilaterali. Il complesso pineale è una struttura impari formata dall’organo pineale e dall’organo parapineale (Concha and Wilson, 2001). In molte specie di vertebrati inferiori i nuclei dell’abenula e il complesso pineale sono asimmetrici nelle dimensioni, nell’organizzazione neurale e nell’espressione genica (Gamse et al., 2005; Gamse et al., 2003). L’organo pineale non presenta rilevanti asimmetrie mentre l’organo parapineale mostra un’organizzazione asimmetrica delle sue connessioni ed è posizionato asimmetricamente all’interno dell’epitalamo (Concha and Wilson, 2001). Numerosi studi hanno indagato i meccanismi di sviluppo delle asimmetrie corporee e i modelli proposti in letteratura suddividono il processo di formazione delle asimmetrie corporee in tre fasi principali la prima delle quali è l’alterazione della simmetria bilaterale al termine della gastrulazione (Hamada et al., 2002). Si suppone che la prima fase sia la comparsa di un organo transiente ciliato che nell’embrione di topo è chiamato nodo embrionale e si trova nella parte posteriore della notocorda, nello Xenopus è il tetto del gastrocele (Essner et al., 2002; Schweickert et al., 2007), e in zebrafish è chiamata vescicola di Kupffer (Brummett and Dumont, 1978; Essner et al., 2002). Le cilia di questa struttura generano una corrente di fluido direzionale che si muove verso il lato sinistro dell’embrione ed è stato ipotizzato che questo flusso nodale sposti correnti ioniche o morfogeni che vengono accumulati a sinistra dell’embrione. Lo spostamento e il conseguente aumento di concentrazione di questi determinanti attiva una cascata di espressione genica asimmetrica unicamente nel lato sinistro dell’embrione che caratterizza la seconda fase del modello proposto per la specificazione dell’asse sinistro-destro. Nella terza fase, questo segnale asimmetrico attiva la morfogenesi asimmetrica degli organi e delle strutture cerebrali (Hamada et al., 2002). Questo lavoro di tesi si propone di caratterizzare una mutazione spontanea alla base dell’aumento nella frequenza di individui con asimmetrie cerebrali rovesciate, e che è stata isolata in seguito ad uno studio di lateralizzazione comportamentale nell’organismo modello zebrafish (Facchin et al., 2009a). I risultati dimostrano che questa mutazione riguarda un allele ad effetto materno e le femmine portatrici sono state identificate osservando la posizione sinistra (normale) o destra (rovesciata) dell’organo parapineale nella loro prole. Ulteriori analisi hanno permesso di ipotizzare che l’allele analizzato sia a dominanza incompleta perché le femmine classificate come eterozigoti presentano un fenotipo intermedio. Successive analisi hanno messo in luce che la mutazione compromette le primissime fasi dello sviluppo delle asimmetrie, e in particolare della formazione della vescicola di Kupffer, necessaria perché si stabilisca il flusso asimmetrico di morfogeni che attiva la cascata di segnale Nodal sul lato sinistro dell’embrione. Embrioni figli di femmine mutanti hanno in media vescicole più piccole rispetto a embrioni derivati da femmine normali, di conseguenza hanno una riduzione dell’espressione a sinistra dei geni della via di Nodal e un aumento di espressione alterata (bilaterale o destra) di tali geni. Embrioni derivati da femmine considerate eterozigoti hanno in ogni caso fenotipo intermedio. Questo lavoro di tesi si propone inoltre di suggerire un possibile significato ecologico alla presenza in popolazioni naturali di zebrafish di un allele ad effetto materno che controlla lo sviluppo delle asimmetrie viscerali e anche neuroanatomiche, indagando anche la possibile correlazione tra asimmetrie cerebrali e lateralizzazione comportamentale. È stato ipotizzato che gli stadi iniziali di sviluppo delle asimmetrie possano determinare anche differenze precoci nello sviluppo anche della lateralizzazione cerebrale e che differenze precoci nelle asimmetrie epitalamiche possano determinare variazioni individuali nel temperamento degli animali. Per testare queste ipotesi femmine putative mutanti sono state incrociate con maschi transgenici della linea foxD3::GFP, in cui la proteina fluorescente verde sotto il controllo del promotore del gene foxD3 è espressa nell’organo pineale e nella parapineale, ed è stato possibile distinguere pesci con la parapineale in posizione normale (sinistra L-PPO) e destra (R-PPO). I soggetti sono stati testati per la lateralità motoria e visiva e per tre misure di temperamento. Differenze significative in pesci con parapineale opposta sono state riscontrate in tutti i test di lateralità (mirror test, rotazione in ambiente familiare, attività anti-predatoria e direzione di svolta in assenza di luce visibile) mentre il ruolo delle asimmetrie diencefaliche sul temperamento è più complesso. Pesci con parapineale rovesciata sono più coraggiosi quando osservano un predatore, passano meno tempo nella zona periferica di un ambiente aperto e in assenza di luce visibile coprono una distanza minore.
CHARACTERIZATION OF A MATERNAL EFFECT ALLELE AFFECTING BEHAVIOR AND THE FORMATION OF LEFT-RIGHT AXIS IN ZEBRAFISH (Danio rerio)
DOMENICHINI, ALICE
2010
Abstract
L’organizzazione corporea dei vertebrati è caratterizzata da simmetria bilaterale esterna, mentre le strutture interne non presentano la stessa organizzazione ed è possibile distinguere tre tipi di asimmetrie che caratterizzano gli organi interni: asimmetrie viscerali, neuroanatomiche e funzionali. Le asimmetrie viscerali fanno riferimento ad organi impari, come il cuore o gli organi dell’apparato digerente, che sono posizionati asimmetricamente nella cavità corporea (Capdevila et al., 2000) o ad organi pari come i polmoni che, pur essendo strutture bilaterali, presentano asimmetrie morfologiche. Accanto alle asimmetrie viscerali è possibile identificare asimmetrie neuroanatomiche. Nell’uomo una struttura localizzata nell’area di Wernicke, il planum temporale, è significativamente più grande nell’emisfero sinistro rispetto all’emisfero destro (Geschwind and Levitsky, 1968). Asimmetrie neuroanatomiche sono state riscontrate anche negli uccelli, nei topi e negli scimpanzè (Cantalupo and Hopkins, 2001). Nei vertebrati inferiori un’importante asimmetria neuroanatomica si osserva nell’epitalamo. Questa regione è costituita da due strutture: l’abenula e il complesso pineale (Concha and Wilson, 2001). L’abenula è una struttura pari, ed è formata da due nuclei bilaterali. Il complesso pineale è una struttura impari formata dall’organo pineale e dall’organo parapineale (Concha and Wilson, 2001). In molte specie di vertebrati inferiori i nuclei dell’abenula e il complesso pineale sono asimmetrici nelle dimensioni, nell’organizzazione neurale e nell’espressione genica (Gamse et al., 2005; Gamse et al., 2003). L’organo pineale non presenta rilevanti asimmetrie mentre l’organo parapineale mostra un’organizzazione asimmetrica delle sue connessioni ed è posizionato asimmetricamente all’interno dell’epitalamo (Concha and Wilson, 2001). Numerosi studi hanno indagato i meccanismi di sviluppo delle asimmetrie corporee e i modelli proposti in letteratura suddividono il processo di formazione delle asimmetrie corporee in tre fasi principali la prima delle quali è l’alterazione della simmetria bilaterale al termine della gastrulazione (Hamada et al., 2002). Si suppone che la prima fase sia la comparsa di un organo transiente ciliato che nell’embrione di topo è chiamato nodo embrionale e si trova nella parte posteriore della notocorda, nello Xenopus è il tetto del gastrocele (Essner et al., 2002; Schweickert et al., 2007), e in zebrafish è chiamata vescicola di Kupffer (Brummett and Dumont, 1978; Essner et al., 2002). Le cilia di questa struttura generano una corrente di fluido direzionale che si muove verso il lato sinistro dell’embrione ed è stato ipotizzato che questo flusso nodale sposti correnti ioniche o morfogeni che vengono accumulati a sinistra dell’embrione. Lo spostamento e il conseguente aumento di concentrazione di questi determinanti attiva una cascata di espressione genica asimmetrica unicamente nel lato sinistro dell’embrione che caratterizza la seconda fase del modello proposto per la specificazione dell’asse sinistro-destro. Nella terza fase, questo segnale asimmetrico attiva la morfogenesi asimmetrica degli organi e delle strutture cerebrali (Hamada et al., 2002). Questo lavoro di tesi si propone di caratterizzare una mutazione spontanea alla base dell’aumento nella frequenza di individui con asimmetrie cerebrali rovesciate, e che è stata isolata in seguito ad uno studio di lateralizzazione comportamentale nell’organismo modello zebrafish (Facchin et al., 2009a). I risultati dimostrano che questa mutazione riguarda un allele ad effetto materno e le femmine portatrici sono state identificate osservando la posizione sinistra (normale) o destra (rovesciata) dell’organo parapineale nella loro prole. Ulteriori analisi hanno permesso di ipotizzare che l’allele analizzato sia a dominanza incompleta perché le femmine classificate come eterozigoti presentano un fenotipo intermedio. Successive analisi hanno messo in luce che la mutazione compromette le primissime fasi dello sviluppo delle asimmetrie, e in particolare della formazione della vescicola di Kupffer, necessaria perché si stabilisca il flusso asimmetrico di morfogeni che attiva la cascata di segnale Nodal sul lato sinistro dell’embrione. Embrioni figli di femmine mutanti hanno in media vescicole più piccole rispetto a embrioni derivati da femmine normali, di conseguenza hanno una riduzione dell’espressione a sinistra dei geni della via di Nodal e un aumento di espressione alterata (bilaterale o destra) di tali geni. Embrioni derivati da femmine considerate eterozigoti hanno in ogni caso fenotipo intermedio. Questo lavoro di tesi si propone inoltre di suggerire un possibile significato ecologico alla presenza in popolazioni naturali di zebrafish di un allele ad effetto materno che controlla lo sviluppo delle asimmetrie viscerali e anche neuroanatomiche, indagando anche la possibile correlazione tra asimmetrie cerebrali e lateralizzazione comportamentale. È stato ipotizzato che gli stadi iniziali di sviluppo delle asimmetrie possano determinare anche differenze precoci nello sviluppo anche della lateralizzazione cerebrale e che differenze precoci nelle asimmetrie epitalamiche possano determinare variazioni individuali nel temperamento degli animali. Per testare queste ipotesi femmine putative mutanti sono state incrociate con maschi transgenici della linea foxD3::GFP, in cui la proteina fluorescente verde sotto il controllo del promotore del gene foxD3 è espressa nell’organo pineale e nella parapineale, ed è stato possibile distinguere pesci con la parapineale in posizione normale (sinistra L-PPO) e destra (R-PPO). I soggetti sono stati testati per la lateralità motoria e visiva e per tre misure di temperamento. Differenze significative in pesci con parapineale opposta sono state riscontrate in tutti i test di lateralità (mirror test, rotazione in ambiente familiare, attività anti-predatoria e direzione di svolta in assenza di luce visibile) mentre il ruolo delle asimmetrie diencefaliche sul temperamento è più complesso. Pesci con parapineale rovesciata sono più coraggiosi quando osservano un predatore, passano meno tempo nella zona periferica di un ambiente aperto e in assenza di luce visibile coprono una distanza minore.File | Dimensione | Formato | |
---|---|---|---|
tesi_ALICE_290110.pdf
accesso aperto
Dimensione
23.08 MB
Formato
Adobe PDF
|
23.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/111238
URN:NBN:IT:UNIPD-111238