Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective degeneration of motor neurons. Respiratory muscle involvement reduces patient survival to two to four years after symptom onset. Current therapeutic strategies are not resolutive, and no distinct molecular marker are yet available. Increasing evidence indicates that neuroinflammatory processes play a pivotal role in disease onset and progression. Activation gliosis processes, together with macrophage infiltration in peripheral nerves, creates a complex inflammatory milieu that may initially exert protective effects but ultimately contributes to neuronal loss. This thesis investigated the role of two proteins, GPNMB and AXL, as modulators of neuroinflammatory processes in ALS. Their regulation by the metalloproteases ADAM10 and ADAM17 was assessed, as well as their potential as therapeutic targets and biomarkers. By situ hybridization and immunohistochemistry analysis on tissues from multiple ALS animal models, I demonstrated that Gpnmb expression, progressively shifts from neurons to reactive microglia and macrophages during disease progression. Its co-localization with Arginase-1-positive microglia suggests a role in late, potentially insufficient, neuroprotective responses. Parallel analyses revealed that ectodomain shedding of both Gpnmb and Axl is tightly regulated by ADAM10/17. Importantly, pharmacological inhibition of ADAM10/17 reduced the release of Gpnmb and Axl ectodomains and attenuated inflammatory cytokine secretion, establishing a direct link between proteolytic cleavage and neuroinflammatory signaling. The recombinant extracellular fragment of Gpnmb significantly enhanced motor neuron survival in primary cultures derived from both wild-type and SOD1.G93A mice, preserving cells viability under stress conditions. On the other hand, in vivo administration of recombinant Gpnmb in ALS rats produced only modest effects, likely due to limitations in dosage and delivery. To overcome these constraints, a lentiviral construct enabling stable overexpression of human GPNMB was developed and validated in vitro, representing a promising tool for future in vivo neuroprotection studies. Biomarker analyses demonstrated progressive increases in soluble Gpnmb (sGpnmb) levels in both cerebrospinal fluid (CSF) and serum of ALS models, with distinct trends: steep rises in CSF reflected central neurodegeneration and microgliosis, while slower increases in serum paralleled peripheral immune involvement. Comparative analyses in a Charcot–Marie–Tooth model confirmed that serum sGpnmb effectively tracks peripheral inflammation, whereas CSF levels remain largely unchanged. Soluble Axl (sAxl) also emerged as promising biomarker, showing increased levels in the serum of ALS mice, particularly at advanced stages. Translation to patient cohorts validated these observations. Serum sGPNMB was significantly elevated in ALS patients compared to controls, with higher levels in spinal-onset cases. Moreover, both serum and CSF sAXL levels were significantly increased, and CSF measurements has shown promising prognostic value. In conclusion, this work identifies GPNMB and Axl as critical modulators of neuroinflammation in ALS, under the regulation of ADAM10/17 metalloproteases. The neuroprotective role of GPNMB supports its further exploration as a therapeutic candidate, while soluble GPNMB and Axl demonstrate strong potential as diagnostic and prognostic biomarkers. Collectively, these findings provide novel mechanistic and translational insights into ALS pathogenesis, advancing the development of innovative strategies for monitoring and modulating neuroinflammation in ALS.
La sclerosi laterale amiotrofica (SLA) è una malattia neurodegenerativa fatale caratterizzata dalla degenerazione selettiva dei motoneuroni. Il coinvolgimento dei muscoli respiratori riduce la sopravvivenza dei pazienti a due-quattro anni dall’esordio dei sintomi. Le strategie terapeutiche attuali non sono risolutive e non esistono ancora marcatori molecolari distintivi. Evidenze crescenti indicano che i processi neuroinfiammatori svolgono un ruolo cruciale nell’insorgenza e progressione della malattia. L’attivazione dei processi di gliosi, insieme all’infiltrazione di macrofagi nei nervi periferici, genera un microambiente infiammatorio complesso che può inizialmente avere effetti protettivi, ma che contribuisce infine alla perdita neuronale. Questa tesi ha indagato il ruolo di due proteine, GPNMB e AXL, come modulatori dei processi neuroinfiammatori nella SLA. È stata valutata la loro regolazione da parte delle metalloproteasi ADAM10/17, nonché il loro potenziale come bersagli terapeutici e biomarcatori. Mediante ibridazione in situ e analisi immunoistochimica su tessuti di diversi modelli animali di SLA, è stato dimostrato che l’espressione di Gpnmb migra progressivamente dai neuroni alle microglia e macrofagi reattivi durante la progressione della malattia. La co-localizzazione con microglia Arginase-1-positiva suggerisce un ruolo in risposte neuroprotettive tardive, potenzialmente insufficienti. Analisi parallele hanno rivelato che il rilascio dell’ectodominio di Gpnmb e Axl è strettamente regolato da ADAM10/17. L’inibizione farmacologica di ADAM10/17 ha ridotto il rilascio degli ectodomini e attenuato la secrezione di citochine infiammatorie, stabilendo un legame diretto tra proteolisi e regolazione neuroinfiammatoria. Il frammento extracellulare ricombinante di Gpnmb ha migliorato significativamente la sopravvivenza dei motoneuroni in colture primarie derivate sia da topi wild-type che SOD1.G93A, preservando la vitalità cellulare in condizioni di stress. La somministrazione in vivo di Gpnmb ricombinante nei ratti SLA ha prodotto effetti modesti, probabilmente a causa di limiti di dosaggio e somministrazione. È stato quindi sviluppato e validato in vitro un costrutto lentivirale per la sovraespressione di GPNMB umano, rappresentando uno strumento promettente per studi futuri di neuroprotezione in vivo. Le analisi dei biomarcatori hanno mostrato incrementi progressivi di Gpnmb solubile (sGpnmb) sia nel liquido cerebrospinale (CSF) che nel siero dei modelli SLA, con tendenze distinte: aumenti repentini nel CSF riflettono neurodegenerazione centrale e microgliosi, mentre incrementi più lenti nel siero riflettono il coinvolgimento immunitario periferico. Analisi su un modello di Charcot–Marie–Tooth hanno confermato che il sGpnmb sierico rispecchia efficacemente l’infiammazione periferica. Anche Axl solubile (sAxl) si è rivelato un biomarcatore promettente, con livelli sierici aumentati nei topi SLA, soprattutto negli stadi avanzati. Nelle misurazioni su biofluidi di pazienti SLA, sGPNMB sierico risulta significativamente elevato rispetto ai controlli, con valori più alti nei casi di esordio spinale. Inoltre, sAXL nel siero nel CSF risulta significativamente aumentato, con un promettente valore prognostico nel CSF. In conclusione, questo lavoro identifica GPNMB e Axl come modulatori chiave della neuroinfiammazione nella SLA, regolati dalle metalloproteasi ADAM10/17. Il ruolo neuroprotettivo di GPNMB incoraggia ulteriori studi come candidato terapeutico, mentre GPNMB e Axl solubili mostrano forte potenziale come biomarcatori diagnostici e prognostici. Questi risultati offrono nuove intuizioni meccanicistiche e traslazionali sulla patogenesi della SLA, favorendo lo sviluppo di strategie innovative per monitorare e modulare la neuroinfiammazione.
Investigating novel therapeutic targets and biomarkers tackling neuroinflammation: GPNMB and AXL in ALS
SPATAFORA, MAURO GIUSEPPE
2026
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective degeneration of motor neurons. Respiratory muscle involvement reduces patient survival to two to four years after symptom onset. Current therapeutic strategies are not resolutive, and no distinct molecular marker are yet available. Increasing evidence indicates that neuroinflammatory processes play a pivotal role in disease onset and progression. Activation gliosis processes, together with macrophage infiltration in peripheral nerves, creates a complex inflammatory milieu that may initially exert protective effects but ultimately contributes to neuronal loss. This thesis investigated the role of two proteins, GPNMB and AXL, as modulators of neuroinflammatory processes in ALS. Their regulation by the metalloproteases ADAM10 and ADAM17 was assessed, as well as their potential as therapeutic targets and biomarkers. By situ hybridization and immunohistochemistry analysis on tissues from multiple ALS animal models, I demonstrated that Gpnmb expression, progressively shifts from neurons to reactive microglia and macrophages during disease progression. Its co-localization with Arginase-1-positive microglia suggests a role in late, potentially insufficient, neuroprotective responses. Parallel analyses revealed that ectodomain shedding of both Gpnmb and Axl is tightly regulated by ADAM10/17. Importantly, pharmacological inhibition of ADAM10/17 reduced the release of Gpnmb and Axl ectodomains and attenuated inflammatory cytokine secretion, establishing a direct link between proteolytic cleavage and neuroinflammatory signaling. The recombinant extracellular fragment of Gpnmb significantly enhanced motor neuron survival in primary cultures derived from both wild-type and SOD1.G93A mice, preserving cells viability under stress conditions. On the other hand, in vivo administration of recombinant Gpnmb in ALS rats produced only modest effects, likely due to limitations in dosage and delivery. To overcome these constraints, a lentiviral construct enabling stable overexpression of human GPNMB was developed and validated in vitro, representing a promising tool for future in vivo neuroprotection studies. Biomarker analyses demonstrated progressive increases in soluble Gpnmb (sGpnmb) levels in both cerebrospinal fluid (CSF) and serum of ALS models, with distinct trends: steep rises in CSF reflected central neurodegeneration and microgliosis, while slower increases in serum paralleled peripheral immune involvement. Comparative analyses in a Charcot–Marie–Tooth model confirmed that serum sGpnmb effectively tracks peripheral inflammation, whereas CSF levels remain largely unchanged. Soluble Axl (sAxl) also emerged as promising biomarker, showing increased levels in the serum of ALS mice, particularly at advanced stages. Translation to patient cohorts validated these observations. Serum sGPNMB was significantly elevated in ALS patients compared to controls, with higher levels in spinal-onset cases. Moreover, both serum and CSF sAXL levels were significantly increased, and CSF measurements has shown promising prognostic value. In conclusion, this work identifies GPNMB and Axl as critical modulators of neuroinflammation in ALS, under the regulation of ADAM10/17 metalloproteases. The neuroprotective role of GPNMB supports its further exploration as a therapeutic candidate, while soluble GPNMB and Axl demonstrate strong potential as diagnostic and prognostic biomarkers. Collectively, these findings provide novel mechanistic and translational insights into ALS pathogenesis, advancing the development of innovative strategies for monitoring and modulating neuroinflammation in ALS.| File | Dimensione | Formato | |
|---|---|---|---|
|
Spatafora_PhD Thesis_Final version.pdf
embargo fino al 08/08/2027
Licenza:
Tutti i diritti riservati
Dimensione
7.29 MB
Formato
Adobe PDF
|
7.29 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.14242/355148
URN:NBN:IT:UNIPV-355148